EMCO WinNC GE Series Fanuc 0-MC

Descripción del software/ Versión del software 13.70

Descripción del software EMCO WinNC Fanuc 0-MC

Ref. SP 1801 Edición I2003-7

EMCO Maier Ges.m.b.H. P.O. Box 131 A-5400 Hallein-Taxach/Austria Phone ++43-(0)62 45-891-0 Fax ++43-(0)62 45-869 65 Internet: www.emco.at E-Mail: service@emco.co.at

Prefacio

El software EMCO WinNC GE FANUC SERIE 0-MC, es una parte del concepto de enseñanza EMCO basada en PC.

El objetivo de este concepto es aprender a operar y programar el control original en el PC.

Con EMCO WinNC para el MILL EMCO, las fresadoras de la serie EMCO PC MILL y EMCO Concept MILL se pueden controlar directamente desde el PC.

Usando un digitalizador o el teclado del control (accesorio) operar el software será mucho más fácil y, por la similitud con el control original, didácticamente más efectivo.

Además de esta descripción del software, está en preparación el siguiente material educativo: Didáctico-CD-ROM "Win Tutorial" (Ejemplos, Operaciòn, Descripción d elos comandos).

El contenido de este manual no incluye toda la funcionalidad del control GE FANUC SERIE 0-MC, la mayor importancia fue describir las funciones principales de forma clara y sencilla para alcanzar la máxima comprensión y éxtio en el aprendizaje.

Para consultas o propuestas de mejora a este manual, rogamos contacte directamente con

EMCO MAIER Gesellschaft m. b. H. Department Technical Documentation A-5400 Hallein, Austria

Reservados todos los derechos; permitidas las copias sólo con autorización de EMCO MAIER © EMCO MAIER Gesellschaft m.b.H., Hallein 2003

Indice

A: Descripción de las teclas

Teclado de control, lámina para tableta digitalizadora	A1
Funciones de las teclas	A1
Teclas de entrada de datos	A2
Teclas de función	A2
Teclas de control de la máquina	A4
Descripción de las Teclas	A4
Teclado del PC	A6

B: Principios básicos

Puntos de referencia de la fresadora EMCO	. B1
Decalaje de origen	. B2
Sistema de coordenadas	. B2
Introducción del decalaje de origen	. B3
Medición de datos de herramienta	. B4
Medición de datos de herra-mienta por método de raspado	. B5

C: Secuencias operativas

Resumen de modos operativos	C1
Aproximación al punto de referencia	C2
Determinar idioma y directorio de piezas de trabajo	C2
Introducción de programma	C3
Llamar un programa	C3
Introducir un bloque	C3
Buscar palabra	C3
Insertar bloque	C3
Borrar programa	C4
Borrar todos los programas	C4
Entrada/Salida de datos	C4
Configurar la interfaz en serie	C4
Editar programa	C5
Introducir programa	C5
Editar los decalajes de herramienta	C5
Introducir los decalajes de herramienta	C5
Imprimir programas	C5
Ejecución de programa	C6
Arrangue de un programa de piezas	C6
Visualización durante la ejecución del programa	C6
Buscar bloque	C6
Influir en el programa	C6
Interrumpir el programa	C6
Contador de piezas v tiempo de pieza	C7
Simulación gráfica	C8

D: Programación

Estructura del programa	. D1
Direcciones utilizadas	. D1
Cuadro de conjunto de funciones M	. D1
Comandos de funciones G	. D2
Descripción de los comandos de funciones G	D3
G00 Avance rápido	. D3
G01 Interpolación lineal	D3
G02 Interpolación circular a derechas	D5
G03 Interpolación circular a izquierdas	D5
Interpolación helicoidal	D5
G04 Temporización	. D0
G00 Parada evacta	. D0
G10 Solocción do dotos	. 00
C15 Final de internalación de acordonados nalaros	ים. סם
C16 Inicia de interpolación de coordenadas polares	סם. סח
C17 C10 Selección de plane	. 00
G17-G19 Selección de plano	. D9
G20 Medidas en pulgadas	. D9
G21 Medidas en milimetros	. D9
G28 Aproximación al punto de referencia	D10
G33 Tallado de roscas	D10
Compensacion del radio de herramienta	D11
G40 Cancelar compensacion del radio de herramienta	D11
G41 Compensación del radio de herramienta	
a la izquierda	D11
G42 Compensación del radio de herramienta	
a la derecha	D11
G43 Compensación de longitud de herramienta positiva	D13
G44 Compensación de longitud de herramienta negativa	D13
G44 Cancelar compensación de longitud de herramienta	D13
G50 Cancelar cambio de escala Cancelar efecto espejo	D13
G51 Factor de escala	D13
G51 Efecto espejo de un contorno	D14
G52 Systema de coordenadas locales	D15
G53 Sistema de coordenadas de la máquina	D15
G54-G59 Decalajes de origen 1-6	D15
G61 Modo de parada exacta	D16
G62 Redondeo automático de esquinas	D16
G64 Modo de corte	D16
G68 / G69 Giro de sistema de coordenadas	D17
Ciclos de taladrado G73 - G89	D18
G73 Ciclo de taladrado con arrangue de virutas	D19
G74 Ciclo de roscado con macho a la izquierda	D19
G76 Ciclo de mandrinado fino	D20
G80 Cancelar ciclo de taladrado	D20
G81 Ciclo de taladrado	D20
G82 Cicle de taladrado con temporización	D20
Ce2 Taladrada da aquiaras con extracción	D21
	D21
Got Roscauo con macho	
	DZ3
G86 Ciclo de taladrado con parada del nusilio	DZ3
G87 Ciclo de mandrinado trasero	D24
G88 Ciclo de taladrado con parada de programa	D24
G 89 Ciclo de escariado con temporizacion	D25
G90 Programación de valor absoluto	D25
G91 Programación de valor incremental	D25
G92 Contiguración del sistema de coordenadas	D25
G94 Avance en mm/minuto	D25
G95 Avance en mm/revolución	D25
G97 Revoluciones por minuto	D25
G98 Retirada al plano inicial	D25
G99 Retirada al plano de retirada	D25

Descripción de comando de funciones M	D27
M00 Parada programada	D27
M01 Parada programada condicional	D27
M02 Fin del programa principal	D27
M03 Husillo de fresado conectado a la derecha	D27
M04 Husillo de fresado conectado a la izquierda	D27
M05 Husillo de fresado desconectado	D27
M06 Cambio de herramienta	D27
M08 Refrigerante conectado	D27
M09 Refrigerante desconectado	D27
M27 Girar aparato divisor	D27
M30 Fin del programa principal	D27
M71 Soplado conectado	D27
M72 Soplado desconectado	D27
M98 Llamada a subprograma	D28
M99 Fin de subprograma, orden de salto	D28

G: Progamación flejible NC

9	•	
Variables y parámetros	de cálculo	G1
Cálculo con variables		G1
Estructura de control		G2
Operadores de relación	۱ ۱	G2

H: Alarmas y Mensajes

Alarmas	de	sistema	H1
Alarmas	de	máquina	H3
Alarmas	de	máquina	H6

I: Alarmas de control

Alarmas	de	control I	1

Puesta informatie

ver apéndice

A: Descripción de las teclas

Teclado de control, lámina para tableta digitalizadora

Funciones de las teclas

RESET Pulsar esta tecla para cancelar alarmas, reponer CNC (por ej., para interumpir programa), etc. CURSOR Función de búsqueda, salto de línea arriba/abajo, llamar programa PAGE Página arriba/abajo ALTER Modificar palabra (cambiar) INSRT Insertar palabra, crear nuevo programa DELET Borrar (programa, bloque, palabra) /,# EOB Fin de bloque (End Of Block). CAN Borrar entrada.

INPUT	INPUT Introducir palabra, recoger datos				
OUTP START	Iniciar salida de datos				
POS	Visualizar la posición actual				
PRGRM	Funciones de programa				
MENU OFSET	MENU OFSET Configurar y visualizar decalaje de origen, correcciones de herramienta y desgaste, y varia- bles				
DGNOS PARAM Configurar y visualizar parámetros y mostrar los datos de diagnóstico					
OPR ALARM Visualizar alarmas y mensajes					
AUX GRAPH	Simulación de gráficos				

Teclas de entrada de datos

Teclas de entrada de datos

Nota sobre las teclas de entrada de datos

Cada tecla de entrada de datos realiza varias funciones (número, letra(s) de dirección). Mediante pulsación repetida de la tecla se cambia automáticamente a la función de dirección siguiente.

Teclas de función

Teclas de función

Nota sobre las teclas de función

En el teclado del PC se introducen estas funciones de teclas con F12 en la línea de teclas de software.

emco

Teclas de control de la máquina

Las teclas de la máquina se encuentran en la parte inferior del teclado de control o de la lámina de la tableta digitalizadora.

Según la máquina y los accesorio utilizados, no todas las funciones están activadas.

Teclado de control de la máquina

Sección de teclado de control de máquina de la serie PC - Turn de EMCO

Descripción de las Teclas

SKIP	SKIP (no se ejecutan bloques de secuencia opcional)
D R Y R U N	DRY RUN (recorrido de prueba de programas)
OPT. STOP	OPT STOP (parada de programa en M01)
//	RESET
	Ejecución de bloque individual
	Parada de programa / Arranque de programa
- 4 +Z +Y -X W + X - Y -Z +4	Movimiento manual de eje
\bullet	Aproximar punto de referencia en todos los ejes
	Parar / arrancar avance
	Corrección de husillo inferior a 100% / 100% / superior a 100%

emco

Teclado del PC	
Jos Man Allo Los Man Allo E F F Dulk Relation Jos Man Allo F F F F F Dulk Relation Man Allo F F F F F Dulk Relation Man Allo F F F F Dulk Relation Dulk Relation Man Allo F F F F Dulk Relation Dulk Relation Man Allo F F F Dulk Relation Man Allo Dulk Relation Dulk Relation Man Allo F F Dulk Relation Man Allo Dulk Relation Dulk Relation Dulk Relation Dulk Relation Man Allo F Dulk Relation Dulk Relation <td>Num Fest Rollen 7 +2 9 % RESET 3 SIZAN No- No- No- No- No- No- No- No</td>	Num Fest Rollen 7 +2 9 % RESET 3 SIZAN No- No- No- No- No- No- No- No
 \$ Image: Strate in the strate i	Las funciones de máquina del teclado numérico sólo se activan si NUM-Lock no está activado.

emco

B: Principios básicos

Puntos de referencia del área de trabajo

Puntos de referencia de la fresadora EMCO

M = Punto cero de la máquina

Punto de referencia invariable definido por el fabricante de la máquina.

A partir de este punto se mide toda la máquina. Al mismo tiempo, "M" es el origen del sistema de coordenadas.

R = Punto de referencia

Posición en el área de trabajo de la máquina exactamente definida por limitadores.

Las posiciones de los carros se indican al control por la aproximación de éstos al punto "R". Necesario tras cada fallo de corriente.

N = Punto de referencia de asiento de herramienta

Punto inicial para la medición de las herramientas. "N" está en un punto adecuado del sistema portaherramientas y lo establece el fabricante de la máquina.

W = Punto cero de la pieza de trabajo

Punto inicial de la indicación de medidas del programa de piezas.

El programador puede establecerlo libremente y desplazarlo cuantas veces desee dentro de un programa de piezas.

Decalaje de origen desde el punto cero de la máquina M hasta el punto cero de la pieza de trabajo W

Las coordenadas absolutas se refieren a una posición fija, las coordadas incrementales se refieren a la posición de herramienta.

Decalaje de origen

En las fresadoras EMCO, el cero de la máquina "M" está en el borde delantero izquierdo de la mesa de la máquina. Esta posición es inadecuada como punto de partida para el dimensionado. Con el denominado decalaje de origen, el sistema de coordenadas puede desplazarse a un punto adecuado del área de trabajo de la máquina.

En el registro de decalajes (NPV) se dispone de seis decalajes de origen ajustables.

Cuando se define un valor de decalaje de origen en el registro de decalajes, este valor se tendrá en cuenta al llamar un programa (con G54 - G59) y el punto cero de coordenadas es desplazado de "M" tanto como indique el valor (al punto cero de la pieza de trabajo "W").

El punto cero de la pieza de trabajo puede cambiarse cuantas veces se desee dentro de un programa de piezas.

Sistema de coordenadas

La coordenada X es paralela al borde anterior de la mesa de la máquina, la coordenada Y es paralela al borde lateral, y la coordenada Z es vertical a la mesa de la máquina.

Los valores de la coordenada Z en dirección negativa describen movimientos del sistema de herramienta hacia la pieza de trabajo, los valores en dirección positiva describen movimientos hacia afuera desde la pieza de trabajo.

Sistema de coordenadas en la programación de valor absoluto

El origen del sistema de coordenadas está en el punto cero de la máquina "M" o, tras un decalaje de origen programado, en el punto cero de la pieza de trabajo "W".

Todos los puntos finales se describen a partir del origen del sistema de coordenadas, mediante indicación de las respectivas distancias X, Y y Z.

Sistema de coordenadas en la programación de valor incremental

El origen del sistema de coordenadas está en el punto de referencia del asiento de herramienta "N" o, tras una compensación de longitud de herramienta, en la punta de corte.

Con la programación de valor incremental se describen las trayectorias reales de la herramienta (de punto a punto).

👪 WinNC GE Far	uc Series	M (c) EMCO			
			F	: 100%	S: 100%
COORDI	NATA	S TRABAJO		O 00	000 N0000
NO.	I	DATOS	NO.]	DATOS
_00	Х	0.000	02	Х	0.000
	Y	0.000		Y	0.000
	Ζ	0.000		Ζ	0.000
01	X Y	$0.000 \\ 0.000$	03	X Y	0.000 0.000
	Ζ	0.000		Ζ	0.000
DIR. 5	_		K	ONV	
COMP.	3	F4	F5 TRA	F6 ABAJ	F7

Máscara de entrada para el decalaje de origen

Introducción del decalaje de origen

- Pulsar la tecla
 MENU
 OFSET
- Seleccionar la tecla de software TRABAJ.
- Se visualiza la pantalla de introducción de al lado
- Se pueden introducir los siguientes decalajes: 00 Decalaje básico 01 G54 El decalaje básico se activa siempre, los otros decalajes se añaden a él.
- Pulsando la tecla PAGE PAGE se pasa a la página siguiente. Aquí se pueden introducir los decalajes siguientes: 04 G57 06 G59
- 05.....G58
 En X, Y, Z se introduce la distancia desde el punto cero de la máquina al punto cero de la pieza de trabajo (signo positivo).
- Colocar el cursor en el decalaje deseado con las
 teclas y y .
- Introducir el decalaje (por ej., Z+30.5) y pulsar la tecla INPUT.
- Introducir por orden los valores de decalaje deseados.

Corrección de longitud

Radio de herramienta R

Medición de datos de herramienta

La finalidad de la medición de datos de herramienta es que el software utilice para el posicionamiento la punta de herramienta o el punto medio de la herramienta en la superficie frontal y no el punto de referencia del asiento de herramienta.

Hay que medir cada herramienta que se utiliza para el mecanizado. Para ello se mide la distancia desde el punto de referencia de asiento de herramienta "N" a la punta de la herramienta correspondiente.

Cada una de estas distancias se guarda como parámetro H en el registro de decalajes (GEOMT) (por ej., herramienta 1 - H1).

Puede seleccionarse cualquier número de corrección (máx. 49), pero dicho número ha de tenerse en cuenta en la compensación de longitud de herramienta en el programa de piezas.

Las correcciones de longitud pueden calcularse semiautomáticamente, el **radio de corte** ha de insertarse manualmente como parámetro H.

Hay que tener cuidado para no confundir los parámetros H de longitudes y radios.

Sólo es necesario insertar el radio de herramienta si para la herramienta en cuestión se selecciona una **compensación del radio herramienta.**

En el programa se llama la compensación de longitud de herramienta con los comandos G43 (positivo) o G44 (negativo).

Para G17 (plano XY activo): La medición de los datos de herramienta (GEOMETRÍA) se realiza para: Z absoluto desde el punto "N" R radio de herramienta

Para todos los demás planos activos se calcula siempre el eje vertical al plano. Más adelante se describe el caso normal G17.

Medición de datos de herramienta por método de raspado

- Amarrar una pieza de trabajo en el área de trabajo de tal forma que pueda alcanzarse el punto de medición con el punto de referencia del cabezal y con todas las herramientas a medir.

El punto de referencia del cabezal de la fresadora EMCO PC MILL 100 está en la herramienta de referencia (amarrar previamente).

- Cambiar al modo operativo P/P.
- Insertar una hoja fina de papel entre la pieza de trabajo y el husillo de la fresadora.
- Avanzar con el punto de referencia del cabezal hasta la pieza de trabajo (con el husillo parado), reducir el avance al 1%.

Avanzar con husillo (punto de referencia del cabezal) hasta la pieza de trabajo de forma que la hoja de papel intercalada apenas pueda moverse.

- Pulsar las teclas **POS** y la tecla de software RELATI para visualizar en pantalla la posición relativa.
- Pulsar la tecla $\left| \frac{1-\delta}{2} \right|$. Parpadea la indicación Z.
- Poner el valor Z a 0 con CAN
- Amarrar la herramienta a medir.
- Cambiar al modo operativo MDI.
- Conectar el husillo (por ejemplo, S1000 M3 CN-MARCHA).
- Cambiar al modo operativo P/P.
- Pulsar la tecla
- Raspar la pieza de trabajo.
- En la pantalla aparece directamente la diferencia de longitud entre el punto de referencia del cabezal y la punta de herramienta (valor Z relativo).
- Con las teclas del CURSOR + seleccionar el parámetro H correspondiente.
- Introducir en el parámetro H el valor relativo Z visualizado y confirmar con la tecla .
- Amarrar la herramienta siguiente y raspar la pieza de trabajo, etc.

emco

C: Secuencias operativas

Resumen de modos operativos

Este modo se utiliza para la aproximación al punto de referencia.

Al llegar al punto de referencia, la indicación de valor real se coloca sobre el valor de las coordenadas del punto de referencia. Con ello, el control conoce la posición de la herramienta en la zona de trabajo.

La aproximación al punto de referencia ha de realizarse en las situaciones siguientes:

- Tras conectar la máquina
- Tras un corte de corriente
- Tras la activación de las alarmas "Aproximar punto de referencia" o "Punto de referencia no alcanzado"
- Si se han producido colisiones, o si los carros se agarrotan por sobrecarga.

Para la ejecución de un programa de piezas, el control llama en este modo operativo uno tras otro a los bloques y los evalúa.

Para la evaluación tiene en cuenta todas las correcciones activadas mediante el programa.

Se ejecutan uno tras otro los bloques elaborados de esta forma.

EDIC

En el modo operativo EDITAR PROGRAMA se pueden introducir programas de piezas y transmitir datos.

En el modo operativo **MDI** se puede conectar el husillo y girar la torreta revólver.

El control ejecuta el bloque introducido y borra después el buffer de memoria para nuevas entradas.

Con las teclas de dirección pueden desplazarse manualmente los carros.

En este modo pueden desplazarse los carros con el incremento deseado (1 ... 1000 en μ m/10⁻⁴pulgadas), por medio de las teclas de dirección

El incremento seleccionado (1, 10, 100...) debe ser mayor que la resolución de máquina (recorrido mínimo posible); en caso contrario, no se produce ningún desplazamiento.

REPOS

Posicionar retorno. Aproximar contorno de nuevo en el modo operacional JOG.

Creación de programas en diálogo con la máquina en el modo operacional MDA.

Aproximación al punto de referencia

Mediante la aproximación al punto de referencia se sincroniza el control con la máquina.

- Cambiar al modo operativo REF
- Pulsar primero las teclas de dirección -Z

0

aproximar el punto de referencia en la respectiva dirección.

Con la tecla
 REF
 ALL
 se aproximan automáticamente

todos los ejes en la secuencia correcta (teclado PC).

Peligro de colisión

+Z

Tener cuidado con los obstáculos de la zona de trabajo (elementos de amarre, piezas de trabajo amarradas, etc.).

Tras llegar al punto de referencia, en la pantalla aparecerá la posición del punto de referencia como posición real. Entonces el control ya está sincronizado con la máquina.

Determinar idioma y directorio de piezas de trabajo

- Pulsar la tecla PARAM
- Pulsar la tecla las veces necesarias hasta

que aparezca en pantalla la máscara de introducción AJUSTES GENERALES

Directorio de piezas de trabajo

En el directorio de piezas de trabajo se guardan los programas CNC creados por el usuario.

El directorio de piezas de trabajo es un subdirectorio del directorio de programa señalado en la instalación. Introducir en el campo de entrada "CAM = ..." el nombre del directorio de piezas de trabajo con el teclado del PC (máximo 8 caracteres, sin indicación de unidad ni vía). Los directorios que no existan se crearán.

Idioma activado

Seleccionar entre los idiomas instalados. El idioma seleccionado sólo se activará volviendo a cargar el software.

Introducir en la entrada "LENG.= ..." la designación del idioma:

- DT para Alemán
- EN para Inglés
- FR para Francés
- SP para español

Introducción de programma

Los programas de piezas y subrutinas pueden introducirse en el modo EDIC.

Llamar un programa

- Cambiar al modo EDIC
- Pulsar la tecla PRGRN
- Con la tecla de software BIBLIO se visualizan los programas existentes
- Introducir el número de programa O... Los números de programas a partir de 9500 están reservados para uso interno y por ello no pueden utilizarse
- Nuevo programa: pulsar la tecla
- Programa ya existente: pulsar la tecla

Introducir un bloque

Ejemplo:

♦ ⁸ _N ⁵ _Z	INSRT
9 1 G U	INSRT
$\begin{array}{c} \bullet 4 \\ X \\ R \\ \end{array} \begin{bmatrix} 3 \\ R \\ S \\ \end{array} \begin{bmatrix} 0 \\ S \\ S \\ \end{array}$	INSRT
/,# EOB	INSRT
oder	INSRT

CURSOR

ŧ

Nota:

Con el parámetro "SECU" (AJUSTE 1) se puede establecer si la numeración de bloques se hará de forma automática (1 = si, 0 = no).

Buscar palabra

Introducir la dirección de la palabra a buscar (por ej.

CURSOF

X) y pulsar la tecla ү

Insertar palabra

Colocar el cursor delante de la palabra que ha de preceder a la palabra insertada, introducir la palabra

a insertar (dirección y valor) y pulsar la tecla

Modificar palabra

Colocar el cursor delante de la palabra a modificar,

introducir la palabra y pulsar ALTER

Número de bloque (no es imprescindible)

1^a palabra

2ª palabra

EOB - Final de bloque (también tecla de PC

Borrar palabra

Colocar el cursor delante de la palabra a borrar,

introducir la dirección y pulsar la tecla DELET

Insertar bloque

Colocar el cursor delante del signo EOB ";" en el bloque que debe preceder al bloque insertado e introducir el bloque a insertar.

Borrar bloque

Introducir el número de bloque (N0 si no hay nº de

bloque) y pulsar la tecla

Selección de Entrada / Salida de interfaz

WinNC GE Fanuc Series M (c) EMC	0		
		F: 100%	S: 100%
PARAMETRO (AJUSTES DE LA	A INTERFAS	O 000	00 N0000
	COM 1:	COM 2:	DNC:
Baudios	_9600	9600	9600
Paridad	Е	E	E
Bits parada	1	1	1
Bits datos	7	7	8
Param. de control	00	0000001	
NR. 5_		S KONV	0 T
F3 PARAM DGNOS	F5	F6	F7 ESTPLC

Configuración de interfaces en serie

ADVERTENCIA

Si usa una tarjeta de ampliación de interfaz (por ej. para COM 3 y COM 4) hay que tener en cuenta que se usa un interrupt separado para cada interfaz (por ej.: COM1 - IRQ4, COM2 - IRQ3, COM3 - IRQ11, COM4 - IRQ10).

Borrar programa

Modo operativo EDITAR PROGRAMA Introducir el número de programa (por ej. O22) y

pulsar la tecla DELET.

Borrar todos los programas

Modo operativo EDITAR PROGRAMA Introducir como número de programa O-9999 y pulsar

la tecla DELET

Entrada/Salida de datos

- Pulsar la tecla PARAM. En la pantalla aparece (AJUSTE 1).
- Con E/S se puede seleccionar una interfaz en serie (1 ó 2) o una unidad (A, B o C).
 - 1 interfaz en serie COM1
 - 2 interfaz en serie COM2
 - A unidad de diskette A
 - B unidad de diskette B
 - C unidad de disco duro C, directorio de piezas de trabajo (en configuración de instalación o en AJUSTES GENERALES).
 - P impresora.

Configurar la interfaz en serie

- Pulsar la tecla
 DGNOS
 PARAM
- Pulsar la tecla
 (AJUSTES DE LA INTERFASE 3).

Parámetros:

Baudios: 110, 150, 300, 600, 1200, 2400, 4800, 9600 Paridad: E, O, N

Bits de stop: 1, 2

Bits de datos: 7, 8

La transmisión de / a la unidad de control original sólo puede hacerse en código ISO

Ajuste de estándar:

7 bits de datos, parity even (=E), 1 bit de stop, 9600 boad.

Parámetros de control:

- Bit 0: 1... La transmisión sólo se interrumpirá con el código ETX (Fin de Text)
 - 0... La transmisión se interrumpirá con RESET
- Bit 7: 1... Sobreescribir programa de piezas sin mensaje
 - 0... Mensaje de error si ya existe un programa

Código de signo ETX: % (25H)

Editar programa

- Modo operativo EDIC
- Introducir en (AJUSTE 1), en E/S, la interfaz (receptor).
- Pulsar la tecla PRGRM
- Introducir el programa a enviar. Introducir el número de programa si quiere enviar un programa (p.ej.: O22). Si se escribe por ej. O5-15, se transmitirán todos

los programas con número comprendido entre 5 y 15 (incluidos).

Si se marca como número de programa O-9999, se enviarán todos los programas.

Pulsar la tecla OUTPI

Introducir programa

- Modo operativo EDIC
- Introducir en (AJUSTE 1), en E/S, la interfaz (emisor).
- Pulsar la tecla PRGRM
- Al editar desde el diskette o el disco duro se debe indicar el número de programa. Introducir el número de programa si quiere enviar un programa (p.ej.: O22).

Si se escribe por ej. O5-15, se transmitirán todos los programas con número comprendido entre 5 y 15 (incluidos).

Si se marca como número de programa O-9999, se enviarán todos los programas.

Pulsar la tecla

Editar los decalajes de herramienta

- Modo operativo EDIC
- Introducir en (AJUSTE 1), en E/S, la interfaz (receptor).
- Pulsar las teclas MENU OFSET y OUTPT START
- Si el receptor es una unidad (A, B o C), se transmiten además los decalajes de origen.

Introducir los decalajes de herramienta

- Modo operativo EDIC
- Introducir en (AJUSTE 1), en E/S, la interfaz (receptor).
- Pulsar las teclas MENU OFSET y INPUT

Imprimir programas

- La impresora (impresora standard bajo Windows) debe estar conectada y ON LINE.
- Modo EDIC
- Introducir en (AJUSTE 1), en E/S, P (impresora).
- Pulsar la tecla PRGRN
- Introducir el programa a imprimir. Introducir el número de programa si se quiere imprimir un programa (p.ej.: O22). Si se escribe por ej. O5-15, se imprimirán todos los programas con número comprendido entre 5 y 15 (incluidos).

Si se marca como número de programa O-9999, se imprimirán todos los programas.

 Pulsar la tecla OUTPT START

Ejecución de programa

Arranque de un programa de piezas

Antes de arrancar un programa de piezas, la unidad de control y la máquina han de estar preparados para ejecutarlo.

- Seleccionar el modo EDIC
- Pulsar la tecla PRGRN
- Introducir el número del programa de piezas deseado (ej.: O79).
- Pulsar la tecla 🔒
- Cambiar al modo AUTO
- Pulsar la tecla 🗘

Visualización durante la ejecución del programa

CURSOR

Durante la ejecución del programa se pueden visualizar distintos valores.

- Pulsar la tecla de software PRGRM (estado básico). Durante la ejecución del programa se visualiza el bloque en ejecución.
- Pulsar la tecla de software VERIFI. Durante la ejecución del programa se visualiza el bloque en ejecución, las posiciones actuales, los comandos G y M activos, y la velocidad, avance y herramienta.
- Pulsar la tecla Pos. Las posiciones se ven aumentadas en la pantalla.

Buscar bloque

Con esta función se puede pasar al lugar deseado del programa.

Durante la búsqueda de bloque se realizan los mismos cálculos que en la ejecución normal de programa, pero los carros no se desplazan.

- Modo EDIC
- Seleccionar el programa a ejecutar.
- Posicionar el cursor con las teclas y sobre el bloque en el que se debe empezar la ejecución.
- Cambiar al modo AUTO
- Arrancar el programa con la tecla

Influir en el programa

DRY RUN (avance recorrido de prueba)

DRY RUN sirve para probar programas. El cabezal no se conecta y todos los desplazamientos se realizan en marcha rápida.

Si está activado DRY RUN, se visualiza en la línea superior de la pantalla DRY.

SKIP:

Con SKIP no se ejecutan los bloques de programa marcados con "/" (ej., /N0120 G00 X...) y el programa continúa con el bloque siguiente "/".

Si se ha activado SKIP, aparece en la línea superior de la pantalla SKP.

Interrumpir el programa

Modo bloque único (SINGLE BLOCK): tras cada bloque de programa se detiene el programa.

Se continúa el programa con la tecla 🕠

Si se ha activado SINGLE BLOCK, aparece en la línea superior de la pantalla SBL.

M00:

Tras M00 (parada programada) del programa se detiene el programa. Se continúa el programa con la

M01:

Si se ha activado OPT STOP (se visualiza OPT en la línea superior de la pantalla), M01 está activado como M00; en caso contrario, M01 no está activado.

Ver la versión del software

- Pulsar la tecla

Pulsar la tecla DIAGNOSIS

Aparecerá en pantalla la versión de software de EMCO WinNC y de los dispositivos RS485 que puedan estar conectados.

WinNC GE Fanuc Series M (c) EMCO	
	F: 100% S: 100%
POSICION ACTUAL (ABS	SOLUTA)
O0000	N 0 0 0 0
X	0.000
Y	0.000
Z	0.000
	CAL.PIEZA 0
TIEM OPE 0H 0M	TIEM CICLO 0H 0M 0S
ACT-F 0.00 MM/M	S 01 KONV
ABSOLU RELATI T	ODO F5 F6 F7

Señal de contador de piezas y tiempo de pieza

Contador de piezas y tiempo de pieza

Bajo el display de posición se visualizan el contador de piezas y el tiempo de pieza.

El contador de pieza indica cuantas veces ha transcurrido un programa. Con cada M30 (o M02) el contador de piezas aumenta en 1.

TIEM OPE indica todo el tiempo de recorrido de las secuencias del programa.

TIEM CICLO indica el tiempo de recorrido del programa actual y se vuelve a colocar en 0 con cada inicio de programa.

Puesta en 0 del contador de piezas

El contador de piezas se coloca en 0 oprimiendo

Puesta en 0 del TIEMPO DE RECORRIDO

TIEM OPE (tiempo total) se coloca en 0 oprimiendo

 $\frac{3}{R}$ (R) y en seguida CAN .

WinNC GE Fanuc Series M (c) EMCO	
	F: 100% S: 100%
PARAMETER	O 0000 N0000
(AJUSTE 2) $PWE = 1$ $TAPEF = 0$ (0)	DESHABIL 1: HABILITAR)
PIEZA TOTAL $=$ _	0
PIEZA REQUERD=	0
CAL. PIEZA	0
TIEM OPE 0H 0N	A TIEM CICLO 0H 0M 0S
NR. 5_	S 0 T KONV
F3 F4 DCNOS	F5 F6 F7

Preajuste del contador de piezas

Preajuste del contador de piezas

El contador de piezas puede ser preajustado (SETTING 2).

Mueva el cursor hacia el valor deseado e introduzca el valor nuevo.

PIEZA TOTAL:

Esta suma se aumenta en 1 con cada M30. Se calcula cada recorrido de programa de cada programa (= suma total de todos los recorridos de programa).

PIEZA REQUERIDA:

Número de piezas preajustado. Cuando éste es alcanzado, el programa se para y se emite el mensaje 7043 NUMERO NOMINAL DE PIEZAS ALCANZADO.

En seguida se puede iniciar el programa solamente cuando se repone a cero el contador de piezas o si se si introduce un número de piezas mayor.

WinNC GE Fanuc Series M (c) EMC	:0			
		F:	100%	S: 100%
GRAFICO CARRERA	(PARAM	4 1)	O 000	0 N0000
EJES (XX-0 XZ-1	P= VZ-2)	0		
ANGULO	12-2)			
ROTAZIONE	A=	0		
INCLINACION	A=	0.00		
ESCALA	K=			
CENTRO O MAX./M	IN			
X= 0.000	Y=	0.000	7	0.000
I= 0.000	J=	0.000	L= V	0.000
NUM SECU INIC	N=	0	K=	0.000
NUM SECU FIN	N=	9999		
NR. 5_		KO	NV	
CARRER RELIEV	ZUSAT	ZF5	F6	F7 >

Máscara de introducción para simulación gráfica

Simulación gráfica

Programas NC pueden ser simulados gráficamente.

En la pantalla aparece al lado la máscara de introducción para la simulación gráfica.

El campo de simulación es un detalle rectangular indicado en el borde derecho superior e izquierdo inferior.

Introducciones: EJES P

Introducir aquí el nivel di simulación.

- 0 nivel XY
- 1 nivel XZ
- 2 nivel YZ

MAXIMO/MINIMO

Introducir aquí la esquina derecha, superior (X, Y, Z) e izquierda, inferior (I, J, K) del área de simulación.

Todas las otras selecciones y los softkeys ESCALA y POS no están activos.

Con la tecla **>** se visualiza el softkey 3DVIEW.

Win 3D View es una opción y no está incluído en el volumen base del software.

Ventana de simulación

Con la tecla GRAPH se vuelve a la máscara de introducción para la simulación de gráfica.

No están activados los softkeys AMPLIA, NORMAL y AUX.

Con la tecla MARCHA inicia la simulación gráfica .

Con la tecla PARADA detiene la simulación.

Con la tecla RESET puede interrumpir la simulación.

Movimientos en marcha rápida se indican de manera punteada, movimentos de trabajo como línea contínua.

D: Programación

Estructura del programa

Se utiliza la programación CN para máquinas herramienta según DIN 66025.

El programa CN se compone de una secuencia de bloques de programa que se guardan en memoria en la unidad de control.

Al mecanizar piezas de trabajo, el ordenador lee y comprueba estos bloques según la secuencia programada.

Se envían a la máquina herramienta las correspondientes señales de control.

Un programa de ejecución consta de:

- Número de programa
- Bloques CN
- Palabras
- Direcciones, y
- Combinaciones de números (si es preciso para las direcciones de ejes, con signos).

Cuadro de conjunto de funciones M

M00Parada programada
M01Parada programada condicional
M02Fin del programa
M03Husillo ON en sentido del reloj
M04Husillo ON en sentido opuesto al reloj
M05 ¹ Husillo OFF
M06Cambio herramienta
M07Lubricación mínima ON
M08Refrigerante ON
M09 ¹ Refrigerante OFF
M10Sujetar eje redondo
M11Desbloquear sujeción eje redondo
M27Girar aparato divisor
M30Fin del programa
M71Soplado ON
M72 ¹ Soplado OFF
M98Llamada subrutina
M99Fin de subrutina

1..... Estado de conexión

Direcciones utilizadas

- C chaflán
- F avance, paso de rosca
- G..... función de trayectoria
- H.....número de dirección de corrección en el registro de decalajes (GEOMT)
- I, J, K.... parámetro de arco, factor de escala. K también número de repeticiones por ciclo, ejes de función espejo
- M función de conexión, función adicional
- N número de bloque, de 1 a 9999
- O..... número de programa, de 1 a 9999
- P temporización, llamada de subprograma
- Q..... profundidad de corte o valor de decalaje en el ciclo
- R radio, plano de retroceso en el ciclo
- S velocidad del husillo
- T Ilamada de herramienta
- X, Y, Z.. datos de posición (X también temporización)
- ; fin de bloque

Comandos de funciones G

G00 ¹	Avance rápido
G01	Interpolación lineal
G02	Interpolación circular a derechas
G03	Interpolación circular a izquierdas
G04 ²	Temporización
G09 ²	Parada exacta
G15 ¹	Final de interpol. de coordenadas polares
G16	Comienzo de interpolac. de coord. polares
G17 ¹	Selección de plano XY
G18	Selección de plano ZX
G19	Selección de plano YZ
G20	Medidas en pulgadas
G21	Medidas en milímetros
G28 ²	Aproximación al punto de referencia
G33	Roscado
G40 ¹	Cancelar compensación de radio de corte
G41	Compens de radio de berram a la izo
G42	Compens de radio de herram a la dere
G43	Compensac de longitud de berram posit
G40	Compensade de longitud de herram negat
C401	Cancelar compensación de longitud de
643	borramionta
CE01	Concelor factor de accelor efecto concie
G50 ⁻	Cancelar lacior de escala, electo espejo
Go 1	Cistema da secularadas lassias
G52 ²	Sistema de coordenadas locales
G53 ²	Sistema de coordenadas de maquina
G54'	Decalaje de origen 1
G55	Decalaje de origen 2
G56	Decalaje de origen 3
G57	Decalaje de origen 4
G58	Decalaje de origen 5
G59	Decalaje de origen 6
G61	Modo de parada exacta
G62	Redondeo automática de esquinas
G64 ¹	Modo de corte
G73	Ciclo de taladrado con rotura de virutas
G74	Ciclo de roscado con macho a izquierdas
G76	Ciclo de mandrinado fino
G80 ¹	Cancelar ciclo de taladrado (G83 a G85)
G81	Ciclo de taladrado
G82	Ciclo de taladrado con temporización
G83	Ciclo de taladrado con extracción
G84	Ciclo de roscado con macho
G85	Ciclo de escariado
G86	Ciclo de taladrado con parada de husillo
G87	Ciclo de mandrinado trasero
G88	Ciclo de taladr. con parada del programa
G89	Ciclo de escariado con temporización
G90 ¹	Programacion de valor absoluto
G91	Programación de valor incremental
G92 ²	Configuracón del sistema de coorden.
G94 ¹	Avance en mm/minuto
G95	Avance en mm/revolución
G97 ¹	Revoluciones del husillo por minuto
G98 ¹	Retirada al plano inicial (ciclos de taladr.)
G99	Retirada al plano de retirada

Grupo	Com.	Designación
	G04	Temporación
	G09	Parada exacta
	G10	Adjuste de datos
	G11	Adjuste de datos aparar
0	G28	Aproximac, a punto de referencia
	G52	Sistema de coordinadas locales
	G53	Sistema de coordinadas de máquina
	G92	Configurar sistema de coordonadas
	G00	
	G01	Interpolatión lineal
1	G02	Interpolation rineal
	G02	Interpolation circular a izquierdas
	603	Redendes autométics de esquines
	G33 G17	Selección de plane XV
2	G17	Selección de plano XI
2	G10	
	019	Drogromoción chocluto
3	G90	Programación incromontel
	G91	
5	G94	
	695	Avance en mm/revolucion
6	620	Ivieuluas en pulgadas
	G21	Medidas en milimetros
7	G40	Cancelar compens. De radio de herram.
	G41	Compensi de radio de herram, a lag.
	G42	Compens. de radio de herram. a der
0	G43	Compensac. de longitud de herram. posit.
ð	G44	Compensac. de longitud de herram. negat.
	G49	Cancelar compens. de longitud de herram.
	G73	Ciclo de taladrado con rocha a izqu
	G74	Ciclo de roscado con macho a izqu.
	G10 G80	Borrar ciclo de taladrado
	G00	Ciele de teledrade con reture de virutes
	682	Ciclo de taladiado con tomporización
Q	G02 G83	Ciclo de taladrado con extracción
3	G84	Ciclo de roscado con macho a izqu
	G85	Ciclo de escariado
	G86	Ciclo de taladrado con parada de busillo
	G87	Ciclo de mandrinado trasero
	G88	Ciclo de talarado con parada de programa
	G80	Ciclo de escariado con temporazación
	Gas	Retirada al plano inicial
10	Gaa	Retirada al plano de retirada
	G50	Cancelar factor de escala, efecto espeio
11	G51	Factor de escala, efecto espoio
13	G97	Revoluciones del husillo por minuto
10	G54	Decalaie de origen 1
	G55	Decalaje de origen 2
14	G56	Decalaje de origen 3
	G57	Decalaje de origen 4
	G58	Decalaje de origen 5
	G59	Decalaje de origen 6
	G61	Modo de parada exacta
15	G62	Redondeo automático de esquinas
	G64	Modo de corte
40	G68	giro de sistema de coordenadas con
16	G69	giro de sistema de coordenadas descon
17	G15	Fin de interpolac. de coorden. polares
17	G16	Inicio de interpol. de coorden. polares

..... Estado inicial

1

2

Indicación de medidas absolutas e incrementales

Descripción de los comandos de funciones G

G00 Avance rápido

Formato

N.... G00 X... Y... Z...

Los carros se desplazan a la velocidad máxima hasta el punto final programado (posición de cambio de herramienta, punto inicial para el siguiente arranque de viruta).

Notas

- Mientras se ejecuta G00 se suprime el avance de carro programado F.
- La velocidad de avance rápido la define el fabricante de la máquina.
- El interruptor de corrección de avance está activado.

Ejemplo

G90 absoluto N50 G00 X40 Y56

G91 incremental N50 G00 X-30 Y-30.5

G01 Interpolación lineal

Formato

N... G01 X... Y... Z.... F....

Movimiento recto con velocidad programada de avance.

Ejemplo

G90 absoluto N.. G94

N20 G01 X40 Y20.1 F500

G91 incremental N.. G94 F500 N20 G01 X20 Y-25.9

Chaflanes y radios

Indicando los parámetros C o R se puede insertar un chaflán o un radio entre dos movimientos G00 o G01.

Formato: N.. G00/G01 X.. Y.. C/R N.. G00/G01 X.. Y..

La programación de chaflanes y radios sólo es posible para los planos activos en cada caso. A continuación se describe la programación de los planos XY (G17).

El movimiento programado en el segundo bloque debe iniciarse en el punto b de la Figura de al lado. En caso de programación incremental, debe programarse la distancia del punto b.

Si se está en modo de funcionamiento individual, la herramienta se detiene primero en el punto c y después en el punto d.

Las siguientes situaciones son motivo de un aviso de error:

- Si el trayecto de desplazamiento de uno de los dos bloques G00/G01 es tan pequeño que al insertar un chaflán o un radio no hay ningún punto de intersección, se activa el aviso de error nº 55.
- Si en el segundo bloque no hay programado ningún comando G00/G01, se activan los avisos de error nº 51 o 52.

Insertar chaflanes y radios

Direcciones de giro de G02 y G03

Curva helicoidal

G02 Interpolación circular a derechas

G03 Interpolación circular a izquierdas

Formato

0

- N... G02/G03 X... Y... Z... I... J... K... F...
- N... G02/G03 X... Y... Z... R... F...
- X, Y, Z Punto final de arco (absoluto o incremental)
- I, J, K Parámetros incrementales de arco (distancia desde el punto inicial al centro del arco; I está en relación con el eje X, J en relación con el eje Y, K con el eje Z).
- R.....Radio del arco (arco menor que un semicírculo en +R, mayor que un semicírculo en -R). Puede introducirse en lugar de los parámetros I, J, K.

La herramienta se desplazará al punto final a lo largo del arco definido con el avance programado en F.

Notas

La interpolación circular sólo puede realizarse en el plano activo.

Si I, J o K tienen valor 0, el parámetro en cuestión no debe introducirse.

Hay que contemplar el eje de giro de G02, G03 siempre perpendicularmente al plano activo.

Interpolación helicoidal

Normalmente, para un arco sólo se definen dos ejes. Estos dos ejes determinan el plano en el que está situado el arco.

Si se define un tercer eje vertical (perpendicular), los movimientos de los carros se acoplan de tal forma que se avanzará en línea helicoidal.

La velocidad de avance programada no se mantendrá en la trayectoria real, sino en la trayectoria circular (proyección). El tercer eje, de trayectoria lineal, se controlará de tal forma que llegue al punto final al mismo tiempo que los ejes que se desplazan en círculo.

Limitaciones

- La interpolación helicoidal sólo es posible con G17 (XY- Ebene).
- El ángulo de hélice φ ha de ser inferior a 45°.
- Si en las pasadas de bloque las tangentes espaciales difieren entre sí más de 2°, se realizará en cada caso una parada exacta antes o después de la hélice.

G04 Temporización

Formato

N	G04	Х	[seg]
0			
N	G04	P	[mseg]

La herramienta se detiene durante un tiempo definido por X o P (en la última posición alcanzada) - bordes agudos - transiciones - limpieza en el fondo de la ranura, parada exacta.

Notas

- Con la dirección P no puede emplearse el punto decimal
- La temporización comienza cuando la velocidad de avance del bloque anterior ha llegado a cero.
- t máx. = 2.000 seg, t mín. = 0,1 seg
- Resolución de entrada 100 mseg (0,1 seg)

Ejemplos

N75 G04	4 X2.5	(temporizac	ión = 2.5 seg)
N95	G04	P1000	(temporización
= 1 seg =	= 1000 mse	eg)	

G09 Parada exacta

Formato N... G09

El bloque se ejecutará sólo cuando los carros estén frenados en reposo.

De esa forma las aristas no se redondearán y se lograrán transiciones exactas. G09 es activo en el bloque.

G10 Selección de datos

Con el mando G10 se puede escribir sobre los datos de control, se pueden programar parámetros, escribir datos de herramientas, etc.

En la práctica con G10 se programa frecuentemente el punto cero de la pieza.

Desplazamiento del punto cero

Formato

N... G10 L2 Pp IP...;

- p=0 Desplazamiento externo del punto cero de la pieza
- p=1-6 Desplazamiento normal del punto cero de la pieza según el sistema de coordenadas de la pieza 1-6
- IP Desplazamiento del punto cero de la pieza para los ejes individuales. En la programación IP se sustituye por las letras del eje (X,Y,Z).

Compensación de herramienta

Formato

N... G10 L11 P...R...;

- P Número de la compensación de la herramienta
- R Valor de compensación de la herramienta en el modo de mando absoluto (G90).

En la programación del valor incremental (G91) se añade el valor de compensación de la herramienta en el valor existente.

Nota:

Por razones de compatibilidad con programas CNC más antiguos el sistema permite la introducción de L1 en lugar de L11.

P.A.

Definición de un punto con coordenadas polares

G15 Final de interpolación de coordenadas polares

G16 Inicio de interpolación de coordenadas polares

Formato

N... G15/G16

Entre G16 y G15 pueden determinarse puntos con coordenadas polares.

La selección del plano en el que pueden programarse las coordenadas polares se realiza con G17-G19. Con la dirección del primer eje se define el primer eje, con la dirección del segundo eje se define el ángulo en relación al punto cero de la pieza de trabajo (X0, Y0).

En programación incremental G91 se puede definir sólo el valor incremental.

Ejemplo

G17: plano XY primer eje: radio X=50 segundo eje: ángulo Y=30

Planos del área de trabajo

G17-G19 Selección de plano

Formato

N... G17/G18/G19

Con G17 - G19 se determina el plano en el que puede realizarse la interpolación circular y la interpolación de coordenadas polares; en dicho plano se calculará la compensación del radio de herramienta. En el eje perpendicular al plano activo se realizará la compensación de longitud de herramienta.

- G17 plano XY
- G18 plano ZX
- G19 plano YZ

G20 Medidas en pulgadas

Formato

N... G20

Programando G20 se cambian las siguientes indicaciones al sistema de medición en pulgadas:

- Avance F [mm/min, pulgadas/min, mm/rev, pulgadas/rev]
- Valores de decalaje (decalaje de origen, geometría y desgaste) [mm, pulg.]
- Desplazamientos [mm, pulg.]
- Visualización de la posición actual [mm, pulg.]
- Velocidad de corte [m/min, pies/min]

Notas

- Para mayor claridad, G20 debe definirse en el primer bloque del programa.
- El último sistema de medición programado permanecerá activo incluso tras la desconexión/ conexión del interruptor principal.
- Para volver al sistema de medición original, es preferible utilizar el modo MDI (p.ej. MDI G20 CN-Marcha)

G21 Medidas en milímetros

Formato N... G21

Comentario y notas: como para G20

G28 Aproximación al punto de referencia

Formato

N... G28 X... Y... Z...

X, Y, Z: coordenadas de posición intermedia

El comando G28 se utiliza para la aproximación a un punto de referencia a través de una posición intermedia (X, Y, Z).

Primero se produce la retirada a X, Y o Z, después la aproximación al punto de referencia. Ambos movimientos se realizan con G00.

Se borra el cambio a G92.

G33 Tallado de roscas

Sólo para PC Mill 100 Formato N... G33 Z... F...

F Paso de rosca [mm.]

Z Profundidad de rosca

Con una herramienta adecuada (herramienta de torneado interior o cabezal de refrentado) pueden tallarse roscas.

Notas

- La limitación de avance y velocidad de husillo no están activadas con G33 (100%)
- G33 sólo funciona con EMCO PC Mill 100, porque en EMCO PC Mill 50 no hay previsto "encoder" en el husillo de fresado.

Tallado de roscas

Trayectoria de herramienta con compensación de radio

Definición de G41 Compensación de radio de herramienta a la izquierda

Definición de G42 Compensación de radio de herramienta a la derecha

Compensación del radio de herramienta

Si se utiliza la compensación del radio de la herramienta, el control calcula automáticamente una trayectoria paralela al contorno y así se compensa el radio de la herramienta.

G40 Cancelar compensación del radio de herramienta

La compensación del radio de herramienta se cancela con G40.

Sólo se permite la cancelación en relación con una trayectoria recta (G00, G01).

G40 puede programarse en el mismo bloque con G00 o G01, o en el bloque anterior.

G40 se define generalmente en el bloque de retirada al punto de cambio de herramienta.

G41 Compensación del radio de herramienta a la izquierda

Si la herramienta (vista en la dirección de avance) está **a la izquierda** del contorno a mecanizar, hay que seleccionar G41.

Para poder calcular un radio, en la selección de la compensación del radio de herramienta ha de definirse un parámetro H en el registro de decalajes (GEOMT) que corresponda al radio de herramienta, por ej.

N... G41 H..

Notas

- No cambiar directamente entre G41 y G42, cancelar antes con G40.
- Es necesaria la selección en relación con G00 o G01.
- Es imprescindible definir el radio de herramienta, el parámetro H está activado hasta que sea cancelado con H0 o se programe otro parámetro H.

G42 Compensación del radio de herramienta a la derecha

Si la herramienta (vista en la dirección de avance) está **a la derecha** del contorno a mecanizar, hay que seleccionar G42.

Notas: ver G41.

Trayectorias de herramienta en selección / cancelación de compensación de radio de herramienta

Aproximación y retirada a un punto de esquina desde delante

Aproximación y retirada a un punto de arista desde detrás

Aproximación y retirada desde lateral posterior

 Trayectoria programada de herramienta Trayectoria real de herramienta

En arcos la aproximación se hace siempre a la tangente del punto inicial/final del arco.

La aproximación y la retirada de contorno deben ser superiores al radio de corte R; si no, se interrumpe el programa con alarma.

Si los elementos de contorno son inferiores al radio de corte R, se puede dañar el contorno. El software calcula por adelantado 3 bloques para detectar los posibles problemas e interrumpir en ese caso el programa con una alarma.

Trayectorias de herramienta en arista interior

R G42 G41

Trayectoria de herramienta en ángulo ext.> 90°

- Trayectoria programada de herramienta - Trayectoria real de herramienta

En arcos la aproximación se hace siempre a la tangente del punto inicial/final del arco.

Si los elementos de contorno son inferiores al radio de corte R, se puede dañar el contorno. El software calcula por adelantado 3 bloques para detectar los posibles problemas e interrumpir en ese caso el programa con una alarma.

Trayectorias de herramienta en ejecución de programa con compensación de radio de herramienta

G43 Compensación de longitud de herramienta positiva

G44 Compensación de longitud de herramienta negativa

Formato

N... G43/G44 H...

G43 o G44 llaman a un valor del registro de decalajes (GEOMT) y lo suman o restan como longitud de la herramienta. Este valor se sumará o restará a todos los movimientos Z siguientes (con plano XY activo -G17) del programa.

Ejemplo

N... G43 H05

El valor memorizado en el registro como H05 se sumará como longitud de la herramienta a todos los movimientos Z siguientes.

G44 Cancelar compensación de longitud de herramienta

Se cancelará la compensación de longitud de herramienta positiva (G43) o negativa (G44).

Aumentar un contorno

G50 Cancelar cambio de escala Cancelar efecto espejo G51 Factor de escala

Formato

N... G50 N... G51 X... Y... Z... I... J... K...

Con G51 se calculan a escala todos los datos de posición, hasta que se cancele la escala con G50. Con X, Y y Z se define un punto de referencia $P_{_B}$, desde el cual se calculan las medidas.

Con I, J y K se puede definir para cada eje un factor de escala propio (en 1/1000).

Deformación de un contorno: X 1:2, Y,Z 1:1

Si para los ejes individuales se definen distintos factores de escala, se deforman los contornos. Los movimientos circulares no pueden deformarse; en caso contrario se activa la alarma.

Si se indica un factor de escala negativo se refleja un contorno en torno al punto de referencia $P_{\rm B}$.

Si se indica I-1000, se reflejan lan posiciones X en los planos Y-Z.

Efecto espejo de los valores X

Efecto espejo de los valores Y

Efecto espejo de los valores Z

Si se indica J-1000, se reflejan lan posiciones Y en los planos Z-X.

Si se indica K-1000, se reflejan lan posiciones Z en los planos X-Y.

G52 Systema de coordenadas locales

Formato

N... G52 X... Y... Z...

Con G52 se puede cambiar el origen de coordenadas válido en un momento dado por los ejes X, Y y Z. De esta forma se crea un sistema de subcoordenadas con respecto al sistema de coordenadas existente. G52 está activado a nivel de bloque, y el decalaje programado con dicho comando se mantiene hasta que se llame otro decalaje.

G53 Sistema de coordenadas de la máquina

Formato

N... G53

El punto cero de la máquina lo determina el fabricante (fresadoras EMCO: en el borde anterior izquierdo de la mesa de la máquina).

Algunos pasos de trabajo (cambio de herramienta, posición de medición...) se realizan siempre en el mismo lugar del área de trabajo.

Con G53 se desactiva el decalaje de origen para un bloque de programa y los datos de coordenadas se refieren al punto cero de la máquina.

G54-G59 Decalajes de origen 1-6

En la superficie de trabajo pueden predeterminarse seis posiciones como decalajes de origen (p.ej. puntos en dispositivos de amarre montados en posición fija). Estos decalajes de origen se llaman con G54 - G59.

Véase el capítulo B Principios Básicos - Introducción del decalaje de origen.

G61 Modo de parada exacta

Formato

N... G61

Un bloque sólo se ejecuta cuando los carros están parados en pausa.

Esto no produce redondeo de esquinas ni transiciones exactas.

G61 está activado hasta que se cancele con G62 o G64.

Reacciones de velocidad de los carros con G62 y G64

G62 Redondeo automático de esquinasG64 Modo de corte

Formato

N... G62/G64

G62 y G64 tienen la misma función.

Antes de llegar al punto final en dirección X, el eje Y se acelera. De esta forma se consigue un movimiento homogéneo en transiciones de contorno.

La transición de contorno no tiene ángulos agudos exactos (parábola, hipérbole).

El tamaño de las transiciones de contorno está normalmente dentro de la tolerancia de los planos.

iro de sistema de coordenadas G68/G69

El giro se realiza en el respectivo nivel válido (G17, G18, o G19) giro de sistema de coordenadas G68/ G69

Formato: N... G68 a... b... R... . . N... G69

G68 giro de sistema de coordenadas con.
 G69 giro de sistema de coordenadas descon.
 α / β designa las coordenadas del punto de giro en el respectivo nivel
 R indica el ángulo de giro

Con esta función se pueden por ejemplo cambiar programas usando un mando de giro.

Ejemplo giro de sistema de coordenadas

Beispiel:

N5 G54 N10 G43 T10 H10 M6 N15 S2000 M3 F300 N20 M98 P030100 ;Llamada subrutina N25 G0 Z50 N30 M30

O0100 (Subrutina 0100) N10 G91 G68 X10 Y10 R22.5 N15 G90 X30 Y10 Z5 N20 G1 Z-2 N25 X45 N30 G0 Z5 N35 M17

Reacción de retirada G98, G99

Desarrollo del desplazamiento G98, G99

Repetición de ciclos

Ciclos de taladrado G73 - G89

Sistemática G98/G99

- G98 Tras llegar a la profundidad de taladrado, la herramienta retrocede al plano inicial.
- G99Tras alcanzar la profundidad de taladrado, la herramienta retrocede al plano de retirada, definido por el parámetro R.

Si no están activados G98 o G99, la herramienta retrocede al plano inicial. Si se programa G99 (retroceso al plano de retirada), hay que definir la dirección R. ¡Con G98 se puede omitir R!

El parámetro R se evalúa de forma diferente según se trate de programación de valor absoluto o incremental:

Programación de valor absoluto (G90):

R define la altura del plano de retirada por encima del decalaje de origen real.

Programación de valor incremental (G91):

R define la posición del plano de retirada en relación a la última posición Z (posición de partida para el ciclo de taladrado). Si R tiene valor negativo, el plano de retirada estará por debajo de la posición de partida; si R tiene valor positivo, el plano de retirada estará por encima de la posición de partida.

Desarrollo del desplazamiento

1.- La herramienta se desplaza desde la posición de partida (S) con avance rápido hasta el plano (R) definido por R.

2.- Taladrado específico del ciclo hasta el nivel profundo final (E).

3.- a) La retirada se hace con G98 hasta el plano inicial (posición de partida S), y

b) con G99 hasta el plano de retirada (R).

Número de repeticiones

El parámetro K define el número de repeticiones del ciclo.

En programación absoluta (G90) no tiene sentido esto, ya que taladraría varias veces el mismo agujero. En programación incremental (G91), la herramienta se desplaza cada vez las distancias X e Y. Esta es una forma sencilla de programar filas de taladros.

Taladrar con arranque de virutas con retirada al plano inicial

Taladrar con arranque de virutas con retirada al plano de retirada

G73 Ciclo de taladrado con arranque de virutas

Formato

N... G98(G99) G73/G83 X... Y... Z... (R...) P... Q... F... K...

La herramienta penetra en la pieza de trabajo la distancia Q, retrocede 1 mm. para arrancar las virutas, vuelve a penetrar y así sucesivamente hasta que alcanza la profundidad final y se retira en avance rápido.

Aplicaciones

Taladros profundos, material con malas propiedades de mecanización con arranque de virutas.

- G98(G99) ... Volver al plano inicial (plano de retirada)
- X, Y Posición del agujero
- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada
- P [mseg]..... Temporización en el fondo del agujero P1000 = 1 seg.
- F Avance
- Q [mm] División de corte, avance por corte
- K Número de repeticiones

G74 Ciclo de roscado con macho a la izquierda

Sólo para PC Mill 100/125/155.

Con este ciclo se puede roscar con macho a la izquierda. El ciclo G74 actúa exactamente como G84 con las direcciones de giro invertidas. Ver ciclo de roscado con macho G84.

Ciclo de taladrado fino

Sólo para máquinas con parada orientada de husillo.

Formato

 $N...G98(G99)\ G76\ X...\ Y...\ Z...\ (R...)\ F...\ Q...\ K...$

Este ciclo sirve para escariar con cabezales de rebajar (de interior).

La herramienta se desplaza en avance rápido hasta el plano de retirada, con el avance programado en el programa de piezas hasta la profundidad final de taladrado, el husillo de fresado se detiene orientado, la herramienta se desplaza con avance horizontal (Q) desde la superficie con respecto a la dirección de parada y va en avance rápido hasta el plano de retirada (G99) o el plano inicial (G98) y se posiciona volviendo la distancia Q hasta la posición original.

G98(G99) Volver al plano inicial (plano de retirada)
X, Y Posición del agujero
Z Profundidad absoluta (incremental) de
taladrado
R [mm] Valor absoluto (incremental en G91)
del plano de retirada
FAvance
Q [mm] Distancia de extracción horizontal
K Número de repeticiones

G80 Cancelar ciclo de taladrado

Formato

N... G80

Como los ciclos de taladrado son modales, tienen que cancelarse con G80 u otro comando G del grupo 1 (G00, G01, ...).

G81 Ciclo de taladrado

Formato

N... G98(G99) G81 X... Y... Z... (R...) F... K... La herramenta penetra en la pieza de trabajo hasta la profundidad final a la velocidad de avance y retrocede en avance rápido.

Aplicaciones

Taladros cortos, material con buenas propiedades de arranque de virutas.

G98(G99) ... Volver al plano inicial (plano de retirada)

- X, Y Posición del agujero
- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada
- F Avance
- K Número de repeticiones

Ciclo de taladrado

Ciclo de taladrado con temporización y retirada al plano inicial

Ciclo de taladrado con temporización y retroceso al plano de retirada

G82 Ciclo de taladrado con temporización

Formato

 $N... \; G98(G99) \; G82 \; X... \; Y... \; Z... \; (R...) \; P... \; F... \; K...$

La herramienta desciende a la profundidad final a la velocidad de avance, reposa girando para limpiar el fondo del agujero y retrocede en avance rápido.

Aplicaciones

Taladros cortos, material con buenas propiedades de mecanizado.

G98(G99)	Volver al plano inicial (plano de retirada)
Х, Ү	Posición del agujero
7	Profundidad absoluta (incremental) de

- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada
- P [mseg] Temporización en el fondo del agujero P1000 = 1 seg

F Avance

K Número de repeticiones

Taladrado de agujeros profundos con retirada al plano inicial

G83 Taladrado de agujeros con extracción

Formato

N... G98(G99) G73/G83 X... Y... Z... (R...) P... Q... F... K...

La herramienta penetra en la pieza de trabajo la distancia Q, vuelve al plano inicial (G98) o al plano de retirada (G99) para arrancar las virutas y sacarlas del taladro, vuelve en avance rápido hasta 1 mm antes de la profundidad de taladrado anterior, taladra la distancia Q, etc., hasta llegar a la profundidad final, y vuelve en avance rápido.

Aplicación

Taladros profundos, material (blando) de larga mecanización

Taladrado de agujeros profundos con retroceso al plano de retirada

- G98(G99) ... Volver al plano inicial (plano de retirada)
 X, Y Posición del agujero
 Z Profundidad absoluta (incremental) de taladrado
 R [mm] Valor absoluto (incremental en G91)
- del plano de retirada P [mseg] Temporización en el fondo del agujero
- P1000 = 1 seg.
- F Avance
- Q [mm] División de corte, avance por corte
- K Número de repeticiones

Ciclo de roscado con macho (con G99)

G84 Roscado con macho

Sólo para PC Mill 100/125/155.

Formato

N...G98(G99) G84 X... Y... Z... (R...) F... P... K...

Debe usarse una **compensación de longitud.** La limitación ("override") de husillo y de avance se fijarán durante la mecanización en el 100%.

La herramienta penetra en la pieza de trabajo girando a la derecha con el avance programado hasta la profundidad de taladrado Z, se para allí (temporización P), conmuta a giro a la izquierda y retrocede con el avance programado.

- G98(G99) ... Volver al plano inicial (plano de retirada)
- X, Y Posición del agujero
- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada
- F Paso de rosca (avance/revolución)
- P [mseg] Temporización en el fondo del agujero
- K Número de repeticiones

Ciclo de escariado con retirada al plano inicial

G85 Ciclo de escariado

Formato

 $N... \ G98 \ (G99) \ G85 \ X... \ Y... \ Z... \ (R...) \ F... \ K...$

La herramienta desciende a la profundidad final a la velocidad de avance y retrocede al plano de retirada con velocidad de avance. El retroceso al plano de retirada con avance rápido depende de G98.

G98(G99) .	Volver al plano inicial (plano de retirada)
Х, Ү	Posición del agujero
7	Profundidad abcoluta (incromontal) do

- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada

F Avance

K Número de repeticiones

Ciclo de taladrado con parada de husillo y retirada al plano inicial

G86 Ciclo de taladrado con parada del husillo

Formato

N... G98(G99) G86 X... Y... Z... (R...) F...

La herramienta penetra hasta la profundidad final a la velocidad de avance. En el fondo del agujero, el husillo se para y la herramienta retrocede hasta el punto inicial o el plano de retirada en avance rápido.

G98(G99) ... Volver al plano inicial (plano de retirada) X, Y Posición del agujero Z Profundidad absoluta (incremental) de taladrado R [mm] Valor absoluto (incremental en G91) del plano de retirada

F Avance

Ciclo de taladrado trasero

G87 Ciclo de mandrinado trasero

Sólo para máquinas con parada orientada de husillo.

Formato

N... G87 X... Y... Z... Q... R... F...

Los taladros existentes pueden ensancharse en un lado, desde abajo hacia arriba, con el cabezal de rebajar.

- La herramienta se posiciona en X e Y y se detiene con orientación.
- Después avanza horizontalmente la distancia Q con respecto a la dirección de parada orientada del husillo. El recorrido Q debe ser superior al diámetro de herramienta para que no se produzca colisión.
- La herramienta avanza hasta la profundidad R (sin arranque de virutas).
- Después avanza horizontalmente la distancia Q de vuelta a la posición X, Y (sin arranque de virutas).
- La herramienta avanza verticalmente hasta el punto Z (retirada de material).
- En Z se detiene el husillo con orientación, avanza horizontalmente la distancia Q con respecto a la dirección de parada (de vuelta al taladro existente) y sale del taladro en avance rápido.
- La herramienta avanza horizontalmente la distancia Q hasta la posición X,Y.
- G99No puede programarse, la retirada se hace siempre hasta el plano inicial
- X, Y Posición del agujero
- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Profundidad de taladrado trasero
- F Avance

G88 Ciclo de taladrado con parada de programa

Formato

N... G88 X... Y... Z... (R...) P... F...

La herramienta penetra hasta la profundidad final a la velocidad de avance. En el fondo del agujero, el programa se detiene tras el tiempo de temporización. La retirada se hace en funcionamiento manual.

- X, Y Posición del agujero
- Z Profundidad absoluta (incremental) de taladrado
- R [mm] Valor absoluto (incremental en G91) del plano de retirada
- P [mseg]..... Temporización en el fondo del agujero P1000 = 1 seg.
- F Avance

G 89 Ciclo de escariado con temporizacion

Ver G85

La herramienta desciende a la profundidad final a la velocidad de avance y reposa durante la temporización P. El retroceso al plano de retirada se hace con el avance normal; el retroceso al plano inicial con avance rápido dependiendo de G98.

G90 Programación de valor absoluto

Formato

N... G90

Notas

- Se permite la conmutación directa bloque a bloque entre G90 y G91.
- G90 (G91) puede programarse también con otras funciones G

(N... G90 G00 X... Y... Z...).

G91 Programación de valor incremental

Formato N... G91

Notas: como para G90.

G92 Configuración del sistema de coordenadas

Formato

N... G92 X... Z... (Configurar sistema de coordenadas)

A veces hay que volver a definir el punto cero de la pieza de trabajo en un programa de piezas. Esto se hace con G92.

El decalaje de origen es modal y no se cancela mediante M30 o RESET. Por tanto, no olvidar reponer, antes de terminar el programa, el punto cero original, el que estaba activado al arrancar el programa.

G94 Avance en mm/minuto

Con el comando G94, todos los valores programados en F (avance) son valores en mm./minuto.

G95 Avance en mm/revolución

Sólo para EMCO PC Mill 100/125/155. Con el comando G95, todos los valores programados en F (avance) son valores en mm./revolución.

G97 Revoluciones por minuto

Con el comando G97, todos los valores programados en S son valores en revoluciones/minuto.

G98 Retirada al plano inicialG99 Retirada al plano de retirada

Ver ciclos de taladrado G73 - G89

Descripción de comando de funciones M

M00 Parada programada

Este comando produce una parada en la ejecución de un programa de piezas.

El cabezal de fresado, los avances y el refrigerante se desconectan.

La puerta de protección contra virutas puede abrirse sin que se active la alarma.

La ejecución del programa puede continuar con "NC-

MARCHA" 🔿

M01 Parada programada condicional

M01actúa como M00 si se ha activado la función PARADA OPCIONAL (en la línea superior de la pantalla aparece OPT). Si no está activada la función PARADA OPCIONAL, no se activa M01.

La ejecución del programa puede continuar con "NC-

MARCHA" (. Seguidamente el accionamiento

principal se inserta con todos los valores anteriormente activos.

M02 Fin del programa principal

M30 actúa como M02.

M03 Husillo de fresado conectado a la derecha

El husillo se activa siempre que se hayan programado ciertas revoluciones o una velocidad de corte, la puerta de protección contra virutas esté cerrada y haya una pieza de trabajo debidamente amarrada. M03 ha de utilizarse para todas las herramientas de corte a la derecha.

M04 Husillo de fresado conectado a la izquierda

Igual que M03. M04 debe emplearse para todas las herramientas de corte a la izquierda.

M05 Husillo de fresado desconectado

Se frena eléctricamente el motor principal. Al final del programa el husillo de fresado se desconecta automáticamente.

M06 Cambio de herramienta

Sólo para máquinas con torreta revólver. La herramienta seleccionada previamente con la

palabra T gira hacia adentro. La palabra T describe el número de estación de torreta revólver.

Ejemplo: N100 T04 M06 N110 G43 H4

En el bloque N100 se selecciona la herramienta en la estación 4 de la torreta revólver (T04) y gira con M06. En el bloque N110 se calcula la longitud de la herramienta (introducida en H4) para los desplazamientos siguientes (compensación de longitud de herramienta).

M08 Refrigerante conectado

Sólo para EMCO PC Mill 100/125/155. La bomba de refrigerantre se conecta.

M09 Refrigerante desconectado

Sólo para EMCO PC Mill 100/125/155. La bomba de refrigerante se desconecta.

M27 Girar aparato divisor

Sólo para aparato divisor (accesorio). El aparato divisor gira un paso (ángulo de paso ajustado mecánicamente).

M30 Fin del programa principal

Con M02 se desconectan todos los motores y el ordenador vuelve al comienzo del programa.

M71 Soplado conectado

Sólo para dispositivo de soplado (accesorio). El dispositivo de soplado se conecta.

M72 Soplado desconectado

Sólo para dispositivo de soplado (accesorio). El dispositivo de soplado se desconecta.

M98 Llamada a subprograma

Formato

N... M98 P...

P.....Los primeros cuatro dígitos a partir de la derecha definen el número de subprograma; los siguientes dígitos definen el número de repeticiones.

Notas

- M98 puede programarse también en relación con instrucciones de desplazamiento (p.ej.. G01 X25 M98 P25001)
- Cuando no se especifica el número de repeticiones para M98, el subprograma se ejecuta sólo una vez (M98 P5001)
- Cuando no hay programado número de subprograma, se activa una alarma.
- Está permitido un nivel de anidamiento doble.

M99 Fin de subprograma, orden de salto

Formato

N... M99 P...

M99 en el programa principal:

sin dirección de salto: salto al comienzo del programa con la dirección de salto Pxxxx: Salto al bloque nº xxxx

M99 en el subprograma:

sin dirección de salto: salto al programa de llamada, al bloque que sigue al bloque de llamada (ver gráfico de al lado) con la dirección de salto Pxxxx: salto al programa de llamada, al bloque nº xxxx

Nota

M99 ha de estar en el último lugar del subprograma.

G: Programación flejible NC

Número variable	Tipo variable	Función
#0	Siempre cero sistema variable	Esta variable tiene siempre el valor cero. Invariable.
#1-33	Variables locales	Para disposición libre para cálculos en el programa
#100-149	Variables globales	Para disposición libre para cálculos en el programa
#500-531	Variables globales	Para disposición libre para cálculos en el programa
#1000	Sistema variable	Almacén alimentador: fin de barra alcanzado
#1001	Sistema variable	Almacén alimentador: alimentador ha avanzado
#1002	Sistema variable	Almacén alimentador: primera pieza después de cambio de barra
#3901	Sistema variable	Número nominal de piezas
#3901	Sistema variable	Número efectivo de piezas

Función	Ejemplo
=	#1=2
+	#1=#2+#3
-	#1=#2-#3
*	#1=#2*#3
/	#1=#2/#3

Variables y parámetros de cálculo

Un programa se puede configurar más flexible a través del uso de variables en lugar de valores fijos

Así se pude reaccionar a señales como por ej. valores de medida o a través del uso de variables como valor nominal el mismo programa puede ser usado para geometrías diferentes.

Junto con el calcúlo de variables y saltos de programa se da la posibilidad de crear un archivo altamente flexible y así ahorrar tiempo de programación.

Variables locales y globales pueden ser leidas y escritas. Todas las otras variables sólo pueden ser leidas.

Variables locales sólo pueden ser usadas en aquel macro en que fueron definidas.

Variables locales pueden ser usadas in cada macro independientemente de aquel macro en que fueron definidas.

Cálculo con variables

En las cuatro operaciones fundamentales es válido el modo matemático común de escribir.

La expresión a la derecha del operador puede contener constantes y/o variables,combinado por funciones.

Cada variable puede ser reemplazada por una expresión de cálculo en corchetes o por una constante.

Ejemplo

#1=#[#2]

Durante el cálculo es válida la limitación que la realización del cálculo se efectúa de izquierda a derecha sin observación de la regla de cálculo punto antes de la coma.

Ejemplo

Estructura de control

En programas se puede cambiar la secuencia de control con instrucciones IF y GOTO. Son posibles tres tipos de ramificaciones

- IF[<condición>] THEN
- IF[<condición>] GOTO <n>
- GOTO <destino>

IF[<Condición>] THEN

Después de IF se debe indicar una expresión condicional. Si la expresión condicional se realiza una instrucción macro determinada. Se puede efectuar sólo una instrucción macro.

Ejemplo

Con valores iguales de #1 y #2 se asigna a #3 el valor 5.

IF [#1 EQ #2] THEN#3=5

IF[<Bedingung>] GOTO <n>

Después de IF se debe indicar una expresión condicional. Si la expresión condicional se aplica se efectúa la ramificación al número de bloque. De no ser así se efectúa el siguiente bloque.

Ejemplo

Si el valor de la variable #1 es mayor de 10, se efectúa la ramificación al número de bloque N4. De no ser así, se efectúa el siguiente bloque.

IF [#1 GT 10] GOTO 4

GOTO <n>

El mando de salto GOTO puede ser programado también sin condición. Como destino de salto se puede usar una variable o constante. Con una variable se puede de nuevo reemplazar el número por una expresión de cálculo en corchetes.

Ejemplo

Salta al número de bloque 3

GOTO 3

Ejemplo

Salta alla variable #6

GOTO#6

Operadores de relación

Operadores de relación consisten en dos letras y se usan para comprobar en la comparación de dos valores si éstos son iguales, o si un valor es superior o menor que el otro.

Operador	Significado
EQ	lgual (=)
NE	Desigual (_{≠)}
GT	Superior que (>)
GE	Superior a o igual (?)
LT	Menor que (<)
LE	Menor que o igual (?)

Las expresiones a comparar pueden ser variables n o constantes. Una variable puede de nuevo ser reemplazada por una expresión de cálculo en corchetes.

Ejemplo

IF[#12 EQ 1] GOTO10

Ejemplos de programación macro en resumen:

IF[#1000 EQ 1] GOTO10

IF[#[10]] NE #0] GOTO#[#1]

IF[1 EQ 1] THEN#2 =5

IF[#[#4+#[#2/2]] GT #20] THEN#[#10]] =#1*5+#7

H: Alarmas y Mensajes

Alarmas de sistema

Estas alarmas sólo pueden aparecer cuando se ha arrancado WinNC o WinCTS.

0001 Error al crear fichero ...

Remedio: Comprobar si existen los directorios que se han introducido en los ficheros .INI.

Comprobar si es posible el acceso a escritura en estos directorios.

Verificar si hay bastante memoria en el disco duro.

0002 Error al abrir el fichero ...

Remedio: Comprobar si existen los directorios que se han introducido en los ficheros .INI.

Comprobar si es posible el acceso a escritura en estos directorios (número de los ficheros que se pueden abrir al mismo tiempo). Copiar el fichero correcto en el directorio correspondiente.

0003 Error al leer el fichero ...

Ver 0002.

0004 Error al escribir el fichero ... Ver 0001

0005 Poca memoria RAM ...

Remedio: Cerrar todas las demás aplicaciones WINDOWS. Volver a arrancar WINDOWS

0006 Versión de software no compatible ...

Remedio: Actualizar el software visualizado.

0007 Versión de licencia no válida

Remedio: Informar a EMCO.

- 0011 Interfaz en serie ... para tableta digitalizadora ya ocupada
- Causa: Interfaz en serie ... ya ocupada por otro aparato.
- Remedio: Quitar el otro aparato y conectar la tableta digitalizadora o definir otra interfaz en serie para la tableta digitalizadora.

0012 Interfaz en serie ... para teclado de control ya ocupada

Igual que 0011

0013 Configuración no válida para interfaz en serie

- Causa: La configuración actual no está permitida para WinNC. Configuración permitida: Baudios: 110, 300, 600, 1200, 2400, 4800, 9600, 19200 Número de bits de datos: 7 u 8 Número de bits de stop: 1 ó 2 Paridad: ninguna, par o impar
- Remedio: Cambiar la configuración de interfaz en el control de sistema WINDOWS (Conexiones).
- 0014 No existe interfaz en serie ...

Remedio: Seleccionar una interfaz existente.

0015-0023 (Distintas alarmas)

- Remedio: Arrancar de nuevo WINDOWS. Avisar a EMCO si la alarma vuelve a aparecer.
- 0024 Indicación no válida de interfaz de conexión para teclado de máquina en perfil ...\PROJECT.INI
- Causa: La entrada de conexión de teclado de máquina en el fichero PROJECT.INI no es válida.
- Remedio: Corregir el fichero PROJECT.INI (ver capítulo de Instalación de Software).
- 0025 Indicación no válida de interfaz de conexión para la tableta digitalizadora en perfil ...\PROJECT.INI

Igual que en 0024

- 0026 Indicación no válida de teclado de Notebook en el perfil ...\PROJECT.INI
- Causa: La entrada del teclado Notebook en el fichero PROJECT.INI no es válida.
- Remedio: Corregir el fichero PROJECT.INI (ver capítulo de Instalación del Software).

0027 Error al crear ventana de arranque

Remedio: Arrancar de nuevo WINDOWS. Avisar a EMCO si la alarma vuelve a aparecer.

0028 Indicación no válida para representación de ventana en el perfil ...\WINNC.INI...

Causa: La entrada para la representación de ventana en el fichero PROJECT.INI no es válida.

Remedio: Corregir el fichero PROJECT.INI (ver capítulo de Instalación del Software).

0029 Error al inicializar un temporizador

Remedio: Cerrar todas las demás aplicaciones WINDOWS o volver a arrancar WINDOWS.

0030 Se necesita Windows 3.1 o versión superior

WinNC necesita WINDOWS 3.1 o versión superior.

0031-0036 (Distintas alarmas) Ver 0002

0037 Error de asignación de memoria

Remedio: Cerrar todas las demás aplicaciones WINDOWS o volver a arrancar WINDOWS.

0038 Versión de software no autorizada Informar a EMCO.

0039 Proyecto incompatible con versión de software

Posible error de versión de software, informar a EMCO.

0040 Indicación no válida de interfaz de conexión para interfaz DNC en el perfil...\PROJECT.INI

Causa: Entrada DNC en fichero PROJECT.INI no válida.

Remedio: Corregir el fichero PROJECT.INI (ver capítulo de Instalación de Software).

0100 No se ha podido crear Mailslot

- Causa: Poca memoria RAM, menos de 640 kB.
- Remedio: Cerrar todas las demás aplicaciones WINDOWS o volver a arrancar WINDOWS. Si no se resuelve el problema, sacar todos los aparatos (devices) innecesarios y drivers del fichero CONFIG.SYS o cargarlos en la zona superior de la memoria.
- 0101 Para WinCTS se necesita Windows para Workgroups 3.11 o versión superior

WinCTS necesita WINDOWS para WORKGROUPS 3.11 o superior.

0102 Error en la creación de la tabla de asignación de mapa de bits de teclas

Remedio: Arrancar de nuevo WINDOWS. Informar a EMCO si vuelve a aparecer esta alarma.

- 0103 Entrada no válida para estado ABS en el perfil ...\PROJECT.INI
- Causa: Entrada CTS en fichero PROJECT.INI no válida.
- Remedio: Corregir el fichero PROJECT.INI (ver capítulo de Instalación de Software).

0104 Error al averiguar Workgroup

Remedio: Arrancar de nuevo WINDOWS. Informar a EMCO si vuelve a aparecer esta alarma.

0105 No se ha encontrado ningún Workgroup

Remedio: Asignar al ordenador Workgroup para WinCTS; si es necesario, crear el Workgroup para WinCTS.

0106 Entrada no válida para el número de teclas que deben mostrarse en el perfil\WINNC.INI

- Causa: La entrada KeyFifoSize del fichero WINNC.INI no es válida.
- Remedio: Corregir la cifra del fichero WINNC.INI, por ej.: 50 (ver capítulo de Instalación del software).

0107 - 0110 (Distintas alarmas)

Remedio: Arrancar de nuevo WINDOWS. Informar a EMCO si vuelve a aparecer esta alarma.

Alarmas de máquina

6000 - 7999 Alarmas de máguina Ver alarmas de máquina 8004 ORDxx Motor principal no preparado 8005 - 8009 ORDxx Error interno AC Si se repite, avisar a EMCO 8010 ORDxx Error de sincronización de motor principal Causa: El motor principal no encuentra marca de sincronización Remedio: Si se repite el problema, avisar a EMCO 8011 - 8013 ORDxx Error interno AC Remedio: Si se repite el problema, avisar a EMCO 8014 ORDxx AC: Tiempo de desaceleración de eje muy largo Remedio: Si se repite el problema, avisar a EMCO 8018 ORDxx Error interno AC Remedio: Si se repite el problema, avisar a EMCO 8021 ORDxx Error interno AC Si se repite el problema, avisar a EMCO Remedio: 8022 ORDxx Error interno AC Remedio: Si se repite el problema, avisar a EMCO 8023 ORDxx Valor Z no válido para hélice Causa: El valor Z de hélice debe ser inferior a la longitud del arco a recorrer Remedio: Corregir programa 8101 Error fatal de inicializ. AC Causa: error interno Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO. 8102 Error fatal de inicializ. AC véase 8101. 8103 Error fatal de inicializ. AC véase 8101. 8104 Error fatal de sistema AC véase 8101. 8105 Error fatal de inicializ. AC véase 8101. 8106 No hay placa PC-COM Causa: placa PC-COM no puede ser seleccionada (quizá no instalada). Remedio: instalar placa, ajustar otra dirección con jumper 8107 Placa PC-COM no responde véase 8106. 8108 Error fatal en placa PC-COM véase 8106. 8109 Error fatal en placa PC-COM véase 8106.

8110 Falta mensaje init PC-COM

Causa: error fatal

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8111 Error de configuración PC-COM véase 8110.

8113 Datos inválidos (pccom.hex) véase 8110.

8114 Error de programación PC-COM véase 8110.

8115 Falta acept. paqu.software PC-COM véase 8110.

8116 Error aumento velocidad PC-COM véase 8110.

8117 Error fatal datos init (pccom.hex) véase 8110.

8118 Error init fatal AC

véase 8110, quizá demasiado poca memoria RAM

8119 Número PC Interrupt no posible

Causa: Elnúmero PC-Interrupt no puede ser usado. Remedio: Determinar números Interrupt libres en el control del sistema Windows95 (permisos: 5,7,10, 11, 12, 3, 4 e 15) e introducir estos números en el WinConfig.

8120 PC Interrupt no autorizable véase 8119

8121 Comando inválido a PC-COM

Causa: error interno o cable defectuoso.

Remedio: controlar cable (atornillar); iniciar otra vez software o se necesario instalarlo de nuevo, comunicar error a EMCO.

8122 AC Mailbox interno lleno

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8123 File RECORD no generable

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8124 File RECORD no puede ser escrito

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8125 Dem. poca memoria para buffer record

Causa: demasiado poca memoria RAM, tiempo del record demasiado grande.

Remedio: iniciar software otra vez o se necesario eliminar driver etc. para hacer disponible la memoria, disminuir tiempo de record.

8126 Interpolador AC trabaja dem. tiempo

- Causa: quizá rendimiento insuficiente de la calculadora.
- Remedio: seleccionar con WinConfig un tiempo Interrupt más largo. Pero ésto puede causar una precisión de vía peor.

8127 Demasiado poca memoria en el AC

Causa: demasiado poca memoria RAM

Remedio: terminar otros programas en marcha, iniciar otra vez software, se necesario eliminar driver etc. para hacer disponible la memoria.

8128 Mensaje desconoc. recibido en el AC

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8129 MSD defectuoso, coordinación ejes véase 8128.

8130 Error Init interno AC véase 8128.

8131 Error Init interno AC véase 8128.

8132 Eje ocupado por varios canales véase 8128.

8133 Demas. memoria de bloque NC AC (IPO) véase 8128.

8134 Demasiados centros para círculo véase 8128.

8135 Demasiado pocos centros para círculo véase 8128.

8136 Rayo del círculo demasiado pequeño véase 8128.

8137 Eje hélice inválido

Causa: eje incorrecto para hélice. La combinación axial de los ejes circulares y eje linear no está correcta.

Remedio: corregir programa.

8140 Máquina (ACIF) no responde

Causa: máquina no insercionada o conexionada. Remedio: insercionar y conexionar máquina.

8141 Error PC-COM interno

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8142 Error de programación ACIF

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8143 Falta acept. paqu.software ACIF véase 8142.

8144 Error aumento velocidad ACIF véase 8142.

8145 Error fatal datos Init (acif.hex) véase 8142.

8146 Eje requerido repetidamente véase 8142.

8147 Estado PC-COM inválido (DPRAM) véase 8142.

8148 Comando PC-COM inválido (KNr) véase 8142.

8149 Comando PC-COM inválido (Len) véase 8142.

8150 Error fatal ACIF véase 8142.

8151 Error AC Init (falta file RPF) véase 8142.

8152 Error Init AC (RPF formato file) véase 8142.

8153 Timeout programac. FPGA en el ACIF véase 8142.

8154 Comando inválido hacia PC-COM véase 8142.

8155 Acept. paqu.software FPGA inválido véase 8142 y/o error hardware en placa ACIF (informar servicio EMCO).

8156 Búsqueda Sync más de 1.5 giros véase 8142 y/o error hardware en interruptor de aproximac. (informar servicio EMCO).

8157 Registración datos lista véase 8142.

8158 Gama interr.aprox. (ref.) dem.grande véase 8142 y/o error hardware en interr. de aproximac. (informar servicio EMCO).

8159 Función no implementada

Significado: esta función no puede ser eseguida en operación normal.

8160 Supervisión giro eje 3..7

Causa: eje y/o carro bloquea, la sincronización del eje ha sido perdida

Remedio: viajar al punto de referencia.

8164 Interrup. fin. software máx eje 3..7 Causa: eje al final del área de traslación Remedio: trasladar eje atrás

8168 Interrup. fin. software mín eje 3..7 Causa: eje al final del área de traslación Remedio: trasladar eje atrás

8172 Error comunicación hacia la máquina Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

Controlar conexión PC-máquina, eliminar eventuales fuentes de disturbo.

8173 Comando INC dur. programa en marcha 8174 Comando INC no permitido

8175 Abertura del file MSD no posible Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8176 Abertura del file PLS no posible véase 8175.

8177 Lectura del file PLS no posible véase 8175.

8178 Escribir sobre file PLS no posible véase 8175.

8179 Abertura del file ACS no posible véase 8175.

8180 Lectura del file ACS no posibile véase 8175.

8181 Escribir sobre file ACS no posible véase 8175.

8182 Cambio paso engranaje no terminado

8183 Paso engranaje demasiado grande

8184 Comando interpolación inválido

8185 Modificación datos MSD prohibida véase 8175.

8186 Abertura del file MSD no pos. véase 8175.

8187 Programa PLC defectuoso véase 8175.

8188 Com. pasos engranaje defectuoso véase 8175.

8189 Coordenación canal OB-AC defect. véase 8175.

8190 Canal inválido en comando

8191 Unidad avance JOG incorrecta

8192 Eje inválido usado

8193 Errore PLC fatal véase 8175.

8194 Rosca sin diferencia start-fine

8195 No hay paso de rosca en eje guía Remedio: programar paso de rosca

8196 Demasiados ejes por rosca Remedio: programar máx. 2 ejes por rosca.

8197 Vía de rosca demasiado corta

Causa: longitud rosca demasiado corta. En el pasaje de una rosca a otra debe ser suficiente la longitud de la segunda rosca para tornear una rosca correcta.

Remedio: alargar segunda rosca o sustituirla por pieza recta (G1).

8198 Error interno (demasiadas roscas) véase 8175.

8199 Error interno (estado rosca)

Causa: error interno

Remedio: iniciar software otra vez o se necesario instalarlo de nuevo, comunicar error a EMCO.

8200 Rosca sin husillo rotante Remedio: insercionar husillo

8201 Error interno rosca (IPO) véase 8199.

8202 Error interno rosca (IPO) véase 8199.

8203 Error fatal AC (0-Ptr IPO) véase 8199.

8204 Error fatal Init: PLC/IPO en marcha véase 8199.

8205 Exceso tiempo de marcha PLC Causa: potencia calculadora insuficiente

8206 Inicializac. grupos M PLC incorr. véase 8199.

8207 Datos máquina PLC inválidos véase 8199.

8208 Comando de aplicac. invál. hacia AC véase 8199.

8211 Avance demasiado grande (rosca)

Causa: Paso de rosca demasiado grande / falta, avance en la rosca alcanza 80% de marcha rápida

Remedio: Corregir programa, paso menor o velocidad menor en rosca

9001 Parámetro desconocido

Causa: Diagnóstico de PLC, introducido parámetro desconocido

9002 Número de parámetro no permitido

Causa: Diagnóstico de PLC, introducido parámetro desconocido

9003 Formato de pantalla no permitido Diagnóstico de PLC

9004 No existe módulo de datos Diagnóstico de PLC

9005 No existe palabra de datos Diagnóstico de PLC

9006 No existe interfaz en serie Diagnóstico de PLC

9007 Transmisión de datos en funcionamiento Entrada/Salida de datos

9011 No hay ficheros Entrada/Salida de datos

9014 Ya existe fichero con ese nombre Entrada/Salida de datos

9015 Error al abrir un fichero Entrada/Salida de datos

9016 Error de lectura de fichero

Entrada/Salida de datos: Error al abrir un fichero

9017 Error de escritura de fichero Entrada/Salida de datos

Entrada/Salida de datos

9018 Configuración no permitida de puerto COM

Entrada/Salida de datos

9019 Falta calibración de tableta digitalizadora

- Causa: Tableta digitalizadora instalada pero no calibrada
- Remedio: Calibrar tableta digitalizadora (fijar puntos de esquinas), ver Aparatos externos de conexión

9020 Entrada no válida

Causa: Tableta digitalizadora activada en campo no válido

9021 Puerto COM ya ocupado

Causa: Ya hay otro aparato conectado en interfaz

9022 Tableta digitalizadora inexistente

Remedio: Conectar tableta digitalizadora y comprobar, verificar si la tableta digitalizadora está colocada en la interfaz correcta.

9023 Teclado de control no existente

Remedio:Conectar teclado de control, ajustar teclado de control a RS232 (ver Aparatos de conexión externa), comprobar conexiones de enchufe, verificar si el teclado de control está enchufado en la interfaz correcta.

9024 Error general de comunicación RS232

Remedio: Configurar interfaz RS 232, comprobar conexiones de enchufe

9500 No queda memoria para el programa

Causa: El PC no tiene suficiente memoria RAM libre

Remedio: Cerrar otras aplicaciones WINDOWS, quitar posibles programas residentes en RAM, volver a arrancar PC

9501 Error al guardar el programa

Remedio: ¿Diskette lleno?

9502 Insuficiente memoria al cargar

Ver 9500

9508 Menú siguiente no hallado

Remedio: Si se repite el problema, avisar a EMCO

9509 No hay memoria para pantalla

Remedio: Si se repite el problema, avisar a EMCO

9510 Fallo de memoria de búsqueda de bloques Remedio: Si se repite el problema, avisar a EMCO

9511 Error de proyección de búsqueda de bloques

Remedio: Si se repite el problema, avisar a EMCO

9512 Falta conector de protección de software

Remedio: Conectar Dongle

9514 Error de acceso al programa

Remedio: Verificar fichero en DOS

9515 Descripción de pantalla defectuosa Remedio: Si se repite, avisar a EMCO

9540 Error en BFM / No existe BFM

Remedio: Si se repite el problema, avisar a EMCO

Alarmas de máquina

Estas alarmas son activadas por la máquina. Las alarmas son distintas para PC MILL 50/55 y PC MILL 100/125/155.

Se sale de las alarmas 6000 - 6999 normalmente con RESET. Las alarmas 7000 - 7999 son mensajes que suelen desaparecer cuando se remedia la situación que origina el problema.

PC MILL 50/55

Las siguientes alarmas valen para PC MILL 50/55.

6000: DESCONEXIÓN DE EMERGENCIA

Se ha pulsado la tecla de desconexión de emergencia. Subsanar la situación de peligro y desbloquear la tecla de desconexión de emergencia

6001: SUPERACION DE TIEMPO DE CICLO PLC

Avisar al Servicio Técnico de EMCO.

6002: NO HAY NINGÚN PROGRAMA PLC CARGADO

Avisar al Servicio Técnico de EMCO.

6003: NO HAY NINGÚN MÓDULO DE DATOS DE PLC

Avisar al Servicio Técnico de EMCO.

6004: ERROR DE MEMORIA RAM DE PLC

Avisar al Servicio Técnico de EMCO.

6009: ERROR CONEXIÓN DE SEGURIDAD

Interruptor de puerta o protección principal defectuosos. No puede accionarse la máquina. Avisar al Servicio Técnico de EMCO.

6010: EL MOTOR DE EJE X NO ESTÁ LISTO

Tarjeta de motor gradual defectuosa o muy caliente, fusible de 24 V defectuoso. Revisar fusibles y filtros de armarios de distribución. Avisar al Servicio Técnico de EMCO.

6011: EL MOTOR DE EJE Y NO ESTÁ LISTO Ver 6010.

6012: EL MOTOR DE EJE Z NO ESTÁ LISTO Ver 6010.

6013: EL MOTOR PRINCIPAL NO ESTÁ LISTO

Alimentación, cable o fusible defectuosos. Revisar fusible.

Avisar al Servicio Técnico de EMCO.

6014: CABEZAL SIN VELOCIDAD

Esta alarma se activa cuando el número de revoluciones del cabezal es inferior a 20 rev./min. La causa es la sobrecarga. Cambiar los datos de corte (avance, velocidad, profundidad).

6019: REBASADO TIEMPO DE TORNILLO DE BANCO

Fusible 24 V defectuoso, hardware defectuoso. Avisar al Servicio Técnico de EMCO.

6020: TORNILLO DE BANCO AVERIADO

Fusible 24 V defectuoso, hardware defectuoso. Avisar al Servicio Técnico de EMCO.

6024: PUERTA DE MÁQUINA ABIERTA

La puerta se abre durante un movimiento de la máquina. Se interrumpe un programa CNC en ejecución.

6025: TAPA DE ENGRANAJES ABIERTA

La tapa se abre durante un movimiento de la máquina. Se interrumpe un programa CNC en ejecución. Cerrar la tapa para continuar.

6027: INTERRUPTOR DE PUERTA DEFECTUOSO

El interruptor de puerta automática de máquina está deformado, defectuoso o mal empalmado. Avisar al Servicio Técnico de EMCO.

6028: REBASADO TIEMPO DE PUERTA

La puerta automática se bloquea, suministro insuficiente de presión neumática, interruptor defectuoso.

Revisar puerta, suministro de aire a presión e interruptor, o avisar al Servicio Técnico de EMCO.

6030: NO HAY PIEZAS AMARRADAS

No hay piezas de trabajo, contrasoporte de tornillo de banco desplazado, leva de mando defectuosa, hardware defectuoso.

Ajustar o avisar al Servicio Técnico de EMCO.

6041: REBASADO TIEMPO DE TORRETA REVOLVER

La torreta revólver se atasca (¿colisión?), fusible de 24 V defectuoso, hardware defectuoso. El programa CNC en ejecución se detiene.

Comprobar colisión o avisar al Servicio Técnico de EMCO.

6042: REBASADO TIEMPO DE TORRETA REVOLVER

Ver 6041.

6043: REBASADO TIEMPO DE TORRETA REVOLVER

Ver 6041.

6044: IMPULSO SINCRONIZADO DE TORRETA REVOLVER DEFECTUOSO

Hardware defectuoso. Avisar al Servicio Técnico de EMCO.

6046: NO HAY IMPULSO SINCRONIZADO DE TORRETA REVOLVER

Hardware defectuoso. Avisar al Servicio Técnico de EMCO.

6048: REBASADO TIEMPO DE DIVISIÓN

El aparato divisor se atasca (¿colisión?), insuficiente suministro de aire a presión, hardware defectuoso. Comprobar colisión y suministro de aire o avisar al Servicio Técnico de EMCO.

6049: REBASADO TIEMPO DE BLOQUEO Ver 6048

6050: AVERIADO APARATO DIVISOR

Hardware defectuoso. Avisar al Servicio Técnico de EMCO.

7000: PROGRAMADA PALABRA T ERRONEA

El programa CNC se detiene. Interrumpir programa CNC con RESET; corregir programa.

7007: PARAR AVANCE

En el modo Robótica hay una señal ALTA en la entrada E3.7. La parada de avance está activada hasta que haya una señal BAJA en la entrada E3.7.

7017: APROXIMAR A PUNTO DE REFERENCIA

Aproximar a punto de referencia.

7040: PUERTA DE MÁQUINA ABIERTA

No puede conectarse el husillo principal ni puede activarse el arranque de CN.

Algunos accesorios sólo pueden manejarse con la puerta abierta.

Cerrar la puerta de máquina para iniciar un programa CNC.

7043: ALCANZADO NÚMERO TEÓRICO DE PIEZAS

Alcanzada una cantidad prefijada de pasadas de programa. No puede arrancarse CN. Reposicionar el contador de piezas para poder seguir.

7050: NO HAY PIEZAS AMARRADAS

Después de conectar o tras una alarma, el tornillo de banco no está en posición final delantera ni trasera. No puede activarse el arranque de CN.

Mover a mano el tornillo de banco hasta la posición final válida.

7051: APARATO DIVISOR NO BLOQUEADO

El aparato de piezas no está bloqueado tras la conexión o tras una alarma. No puede activarse el arranque de CN.

PC MILL 100/125/&155

Las siguientes alarmas valen para PC MILL 100/125/155.

6000: DESCONEXION DE EMERGENCIA

Se ha pulsado la tecla de desconexión de emergencia. Subsanar la situación de peligro y desbloquear la tecla de desconexión de emergencia

6001: REBASADO TIEMPO DE CICLO PLC

Avisar al Servicio Técnico de EMCO.

6002: NO HAY NINGÚN PROGRAMA PLC CARGADO

Avisar al Servicio Técnico de EMCO.

6003: NO HAY NINGÚN MÓDULO DE DATOS DE PLC

Avisar al Servicio Técnico de EMCO.

6004: ERROR DE MEMORIA RAM DE PLC

Avisar al Servicio Técnico de EMCO.

6009: ERROR DE CONEXIÓN DE SEGURIDAD

Error del sistema de motor gradual.

Se interrumpe el programa CNC en ejecución, se desconectan los motores auxiliares, se pierde el punto de referencia.

Avisar al Servicio Técnico de EMCO.

6010: EL MOTOR DE EJE X NO ESTÁ LISTO

Tarjeta de motor gradual defectuosa o muy caliente, un fusible está defectuoso.

Se interrumpe el programa CNC en ejecución, se desconectan los motores auxiliares, se pierde el punto de referencia.

Revisar fusibles o avisar al Servicio Técnico de EMCO.

6011: EL MOTOR DE EJE Y NO ESTÁ LISTO Ver 6010.

6012: EL MOTOR DE EJE Z NO ESTÁ LISTO Ver 6010.

6013: EL MOTOR PRINCIPAL NO ESTÁ LISTO

Alimentación de motor principal defectuosa o muy caliente, un fusible está defectuoso.

Se interrumpe el programa CNC en ejecución, se desconectan los motores auxiliares, se pierde el punto de referencia.

Revisar los fusibles o avisar al Servicio Técnico de EMCO.

6014: CABEZAL SIN VELOCIDAD

Esta alarma se activa cuando el número de revoluciones del cabezal es inferior a 20 rev./min. La causa es la sobrecarga. Cambiar los datos de corte (avance, velocidad, profundidad).

6024: PUERTA DE MÁQUINA ABIERTA

La puerta se abre durante un movimiento de la máquina. Se interrumpe un programa CNC en ejecución.

6041: REBASADO TIEMPO DE GIRO DE TORRETA REVOLVER

La torreta revólver se atasca (¿colisión?), fusible defectuoso, hardware defectuoso.

El programa CNC en ejecución se detiene.

Comprobar fusibles o si hay colisión, o avisar al Servicio Técnico de EMCO.

6044: CONTROL DE POSICIÓN DE TAMBOR DE TORRETA REVOLVER

Error de posición del motor principal, error de control de posición (interruptor inductivo de proximidad defectuoso o desplazado, holgura de tambor), fusible defectuoso, hardware defectuoso.

El eje Z puede haberse salido del piñón cuando la máquina estaba desconectada.

El programa CNC en ejecución se detiene. Avisar al Servicio Técnico de EMCO.

6047: TAMBOR DE TORRETA REVOLVER NO BLOQUEADO

El tambor de herramienta ha traspasado la posición de bloqueo, interruptor inductivo de proximidad defectuoso o desplazado, fusible defectuoso, hardware defectuoso.

El programa CNC en ejecución se detiene.

Avisar al Servicio Técnico de EMCO.

Si el tambor de torreta revólver simplemente se ha pasado de su posición (no hay defecto), hay que hacer lo siguiente:

Cambiar al modo operativo MANUAL (JOG).

Cambiar de posición el interruptor de llave (funcionamiento manual).

Mover el carro Z hacia adelante hasta que desaparezca de pantalla la alarma.

6048: plato no preparado

Se ha intentado poner en marcha el husillo con el plato abierto o sin pieza de trabajo amarrada.

El plato se bloquea mecánicamente, el suministro de aire a presión es insuficiente, fusible defectuoso, hardware defectuoso.

Comprobar fusibles o avisar al Servicio Técnico de EMCO.

6049: pinzas no preparadas

Ver 6048.

6050: M25 con cabezal en marcha

Con M25 el cabezal debe estar parado (tener en cuenta fase de salida, programar temporización si es necesario).

6055: no hay piezas amarradas

Esta alarma se activa cuando, con el cabezal girando, el elemento de amarre o el contrapunto llegan a la posición final.

La pieza de trabajo ha salido lanzada del elemento de amarre o es apretada por el contrapunto contra el elemento de amarre. Controlar ajuste de elemento de amarre y fuerza de amarre, cambiar valores de corte.

6056: contrapunto no preparado

Se ha intentado poner en marcha el husillo con posición no definida del contrapunto, mover un eje o la torreta.

El contrapunto se bloquea mecánicamente (¿colisión?), el suministro de aire a presión es insuficiente, el fusible defectuoso, el interruptor de solenoide defectuoso.

Comprobar si hay colisiones, revisar fusibles o avisar al Servicio Técnico de EMCO.

6057: M20/m21 con cabezal en marcha

Con M20/M21 el cabezal debe estar parado (tener en cuenta fase de salida, programar temporización, si es necesario).

6058: m25/m26 con ContrapuntO fuera

Para accionar el elemento de amarre en un programa CN con M25 o M26, el contrapunto debe estar en la posición final trasera.

6064: puerta automÁtica no preparada

La puerta se bloquea mecánicamente (¿colisión?), suministro de aire a presión insuficiente, interruptor final defectuoso, fusible defectuoso.

Comprobar si hay colisiones, revisar fusibles o avisar al Servicio Técnico de EMCO.

6072: TORNILLO NO PREPARADO

Intento de poner en marcha el cabezal con un tornillo abierto o sin pieza sujeta.

Tornillo acuñado mecánicamente, suministro de aire comprimido insuficiente, presostato defectuoso, fusible defectuoso, equipo defectuoso.

Compruebe los fusibles o póngase en contacto con el servicio de EMCO.

6073: DISPOSITIVO DIVISOR NO PREPARADO

Causa: interruptor de bloqueo defectuoso cableado defectuoso fusibles defectuosos

El programa en ejecución será abortado.

Los accionamientos auxiliares serán desconectados.

Solución: arregle el dispositivo divisor automático

bloquee el dispositivo divisor

6074: TIEMPO DE DIVISOR EXCEDIDO

Causa: dispositivo divisor acuñado mecánicamente interruptor de bloqueo defectuoso cableado defectuosos fusibles defectuosos

El programa en ejecución será abortado.

Los accionamientos auxiliares serán desconectados. Solución: arregle el dispositivo divisor automático.

6075: M27 EN CABEZAL PRINCIPAL EN FUNCIONAMIENTO

Causa: Error de programación en el programa CN. El programa en ejecución será abortado. Los accionamientos auxiliares serán desconectados. Solución: Corrija el programa CN

7000: PROGRAMADA PALABRA T INCORRECTA

Posición programada de herramienta superior a 10. Se detiene el programa CNC en ejecución. Interrumpir programa con RESET, corregir programa.

7016: CONECTAR MOTORES AUXILIARES

Los motores auxiliares están desconectados. Pulsar la tecla AUX ON durante al menos 0,5 seg (con lo que se evita la conexión no intencionada) para conectar los motores auxiliares.

7017: APROXIMAR PUNTO DE REFERENCIA

Aproximar al punto de referencia.

Si el punto de referencia no está activado, se pueden desplazar manualmente los ejes de avance sólo con el interruptor de llave en posición "Funcionamiento manual".

7018: CONMUTAR INTERRUPTOR DE LLAVE

Al activar el arranque de CN, el interruptor de llave estaba en posición "Funcionamiento manual". No puede activarse el arranque de CN.

Conmutar el interruptor de llave para ejecutar un programa CNC.

7020: ACTIVADO FUNCIONAMIENTO ESPECIAL

Funcionamiento especial: la puerta de la máquina está abierta, los motores auxiliares están conectados, el interruptor de llave está en posición "Funcionamiento manual" y la tecla de confirmación está pulsada.

Los ejes pueden ser desplazados manualmente con la puerta abierta. No se puede girar la torreta revólver con la puerta abierta. Los programas CNC sólo pueden ejecutarse con el husillo parado (RE-CORRIDO DE PRUEBA) y en modo de funcionamiento individual (INDIVIDUAL).

Por razones de seguridad: el funcionamiento de la tecla de confirmación se interrumpe automáticamente al cabo de 40 segundos; después hay que soltar dicha tecla y pulsarla de nuevo.

7021: VÍA LIBRE DE TORRETA REVÓLVER

Se ha interrumpido el cambio de herramienta. No se pueden realizar desplazamientos. Pulsar la tecla de torreta revólver en posición RESETestado de la unidad de control.

7038: MALA LUBRICACION

El pulsador está defectuoso o atascado. No puede activarse el arranque de CN. Esta alarma sólo puede pararse desconectando y volviendo a conectar la máquina. Avisar al Servicio Técnico de EMCO.

7039: MALA LUBRICACION

Muy poco lubricante, el pulsador está defectuoso. No puede activarse el arranque de CN. Comprobar el lubricante y realizar un ciclo correcto de lubricación o avisar al Servicio Técnico de EMCO.

7040: PUERTA DE MÁQUINA ABIERTA

No puede conectarse el motor principal y no puede activarse el arranque CN (excepto en modo de funcionamiento especial).

Cerrar la puerta para ejecutar un programa CNC.

7042: INICIALIZAR LA PUERTA DE MÁQUINA

Cada movimiento y el arranque de CN están bloqueados.

Abrir y cerrar la puerta para activar los circuitos de seguridad.

7043: ALCANZADA LA CANTIDAD TEÓRICA DE PIEZAS

Alcanzada una cantidad prefijada de pasadas de programa. No puede activarse el CN. Reposicionar el contador de piezas para poder continuar.

7052: CONTRAPUNTO en posición intermedia

El contrapunto no está en una posición definida. Todos los movimientos de eje, el husillo y la torreta revólver están blogueados.

Desplazar el contrapunto a la posición final trasera o sujetar una pieza de trabajo con el contrapunto.

7053: CONTRAPUNTO - no hay ninguna pieza sujeta

El contrapunto se ha desplazado hasta la posición final delantera.

Para seguir trabajando hay que llevar primeramente el contrapunto hacia atrás hasta la posición final trasera.

7054: TORNILLO abierto

Causa:	la pieza no está sujeta
	Cuando conecte el cabezal principal
	con M3/M4 se diparará la alarma 6073
	(tornillo no preparado).
Solución:	Suiete

7055: dispositivo divisor no bloqueado

Causa:	el dispositivo divisor no está bloqueado
	Cuando conecte el cabezal principal
	con M3/M4, se disparará la alarma 6073
	(dispositivo divisor no preparado).
Solución:	bloquee dispositivo divisor

I: Alarmas de control

Alarmas de control

Estas alarmas sólo pueden aparecer al manejar o programar las funciones de control o en la ejecución de programas CNC.

1 Error de paridad RS 232

- Causa: Error de paridad de transmisión de datos, configuración incorrecta de RS 232 en aparato externo
- Remedio: Comprobar los cables de datos, ajustar correctamente la interfaz en serie del aparato externo.

2 Error de transmisión RS 232

- Causa: Error de transmisión de datos por exceso de signos; soporte de datos defectuoso
- Remedio: Comprobar los cables de datos, configurar correctamente la interfaz en serie del aparato externo.

10 Nxxxx Código G no válido

Remedio: Corrección del programa

11 ORDxx Falta avance/avance erróneo

- Causa: Intento de arrancar con avance = 0, también con G95/96, si S = 0 o M5
- Remedio: Programar avance o velocidad.

21 Nxxxx Arco: seleccionado plano incorrecto

- Causa: Está activado un plano equivocado (G17, 18, 19) para el arco
- Remedio: Corrección del programa

30 Nxxxx Decalaje de herramienta muy grande

- Causa: Número de decalaje de herramienta no válido
- Remedio: Corrección del programa

33 Nxxxx SRK/FRK no definible

Causa: Se han programado demasiados bloques sin nuevas posiciones; elemento de contorno no válido; radio de círculo programado menor que el radio de herramienta; elemento de contorno demasiado corto

Remedio: Corrección del programa

34 Nxxxx Error al seleccionar SRK/FRK

Error al seleccionar o cancelar compensación de radio de herramienta.

Remedio: Corrección del programa

37 Nxxxx No cambia el plano en SRK/FRK

- Causa: Cambio de plano no permitido en compensación de radio de herramienta. Remedio: Corrección del programa
- 41 Nxxxx Violación de contorno SRK/FRK
- Causa: Elemento de contorno no válido; radio de círculo programado menor que el radio de herramienta; elemento de contorno demasiado corto, violación de contorno de círculo completo.

Remedio: Corrección del programa

51 Nxxxx Falso valor de chaflán/radio

- Causa:: Los elementos de contorno entre los que debe insertarse el chaflán/radio, son muy cortos.
- Remedio: Corrección del programa

52 Nxxxx Trazado de contorno no válido

- Causa: No se consigue un contorno con los parámetros programados.
- Remedio: Corrección del programa

53 Nxxxx Estructura errónea de parámetros

- Causa: No se consigue un contorno con los parámetros programados, se han indicado parámetros no válidos
- Remedio: Corrección del programa

56 Nxxxx Valor de ángulo erróneo

- Causa: Con el ángulo programado no se puede calcular un trazado de contorno, no se obtiene ningún punto de intersección.
- Remedio: Corrección del programa

57 Nxxxx Error en el trazado de contorno

- Causa: Programados parámetros no válidos.
- Remedio: Corrección del programa
- 58 Nxxxx No se puede definir contorno
- Causa: Demasiados bloques programados sin nueva posición, fin de programa durante un trazado de contorno.
- Remedio: Corrección del programa
- 59 ORDxx Programa no hallado
- Causa: No existe programa CNC, configuración errónea de directorio de programa de piezas de trabajo.
- Remedio: Corregir selección de programa, crear programa, configurar directorio de programa de piezas de trabajo.

60 Nxxxx No hallado número de bloque

Causa: Destino del salto no hallado

Remedio: Corrección del programa

62 Nxxxx Error general de ciclo

Causa: Contador de llamadas de subprograma no válido, avance<=0, falta paso de rosca/<=0, falta profundidad de corte/<=0/no válida, altura de retroceso demasiado pequeña; falta dirección de bloque P/Q; falta indicación de repetición de modelo/no válida; falta avance para corte siguiente/no válida; falta profundidad de corte/no válida; rebaje en fondo de ciclo <0; falta punto final de ciclo/no válido; falta punto final de rosca/no válido, herramienta demasiado grande.

Remedio: Corrección del programa

63 Nxxxx Llamada de ciclo no válida

Causa: Falta P/Q, dirección incorrecta. Remedio: Corrección del programa

70 ORDxx Poca memoria

- Causa: EI PC no tiene suficiente memoria de trabajo libre
- Remedio: Cerrar todas las demás aplicaciones WINDOWS, sacar programas residentes de la memoria, arrancar de nuevo el PC.

71 Programa no hallado

- Causa: Programa CN no hallado; no seleccionado aún ningún programar al arrancar.
- Remedio: Corregir llamada o crear programa; seleccionar programa.

73 Ya existe fichero con este nombre

Remedio: Elegir otro nombre de fichero

77 Nxxxx Insuficiente RAM para subrutina

Causa: Demasiados subprogramas anidados Remedio: Corrección del programa

83 Nxxxx Arco no en plano activado

Causa: Arco no programado en plano activado Remedio: Corrección del programa

142 Nxxxx Factor de escala no válido

- Causa: Programado factor de escala erróneo (ej.: 0)
- Remedio: Corrección del programa

142 Zona de simulación errónea

Causa: En la simulación gráfica no se ha indicado zona de simulación o no era correcta.

Remedio: Indicar zona de simulación.

315 Control de giro X

Causa: El motor gradual ha perdido pasos

Remedio: Reducir profundidad de pasada, reducir avance, comprobar el buen desplazamiento de los carros, aproximar punto de referencia

325 Control de giro Y

Ver alarma 315

335 Control de giro Z

Ver alarma 315

500 Nxxxx El punto de destino está detrás de la limitación de zona de trabajo

Causa: Están fuera de la limitación de la zona de campo el punto de destino, el punto de destino de círculo o arco

Remedio: Corrección del programa

501 Nxxxx Punto de destino fuera del limitador de software

Causa: Están fuera del limitador de software el punto de destino, el punto de destino de círculo o arco

Remedio: Corrección del programa

510 ORDxx Limitador de software X

Causa: Rebasado limitador de software en X Remedio: Retroceder manualmente

520 ORDxx Limitador de software Y

520 ORDxx Limitador de software Ver 510

530 ORDxx Limitador de software Z Ver 510

2501 ORDxx Error de sincronización AC

Remedio: RESET; si se repite, informar a EMCO

2502 ORDxx Error de sincronización AC Ver 2501

2503 ORDxx Error de sincronización AC Ver 2501

2504 ORDxx No hay memoria para intérprete

Causa: Insuficiente memoria RAM, imposible continuar el programa

Remedio: Cerrar todas las demás aplicaciones WINDOWS, terminar el programa, quitar los programas residentes (de AUTO-EXEC.BAT y CONFIG. SYS), volver a arrancar el PC

2505 ORDxx No hay memoria para intérprete Ver 2504

2506 ORDxx Poca memoria RAM Ver 2504

2507 ORDxx No alcanzado el punto de referencia

Remedio: Aproximación al punto de referencia

2508 ORDxx Error interno núcleo CN

Remedio: RESET; si se repite, informar a EMCO

2520 ORDxx Falta participante RS485

- Causa: Al arrancar el programa no se han inscrito todos los participantes RS485 necesarios o durante el proceso del programa ha fallado un participante.
 - (AC) Controlador de eje
 - (PLC) Programmable logic control
 - (MT) Teclado de control
- Remedio: Conectar el participante RS485 (máquina, teclado de control), comprobar cables, conectores y terminador. Si se repite, informar a EMCO.

2521 ORDxx Error de comunicación RS485

Remedio: Desconectar/conectar PC; si se repite, informar a EMCO

2522 ORDxx Error de comunicación RS485

Remedio: Desconectar/conectar PC; si se repite, informar a EMCO

2523 ORDxx Error inicial de tarjeta PC de RS485

Ver Instalación del Software, error de instalación del software

2524 ORDxx Error general de RS485

Remedio: Desconectar/conectar PC; si se repite, informar a EMCO

2525 ORDxx Error de transmisión de RS485

Remedio: Comprobar cable y conector de RS485 y terminador; revisar fuentes exteriores de perturbación electromagnética

2526 ORDxx Error de transmisión de RS485

Ver 2525

2527 ORDxx Error interno AC

Remedio: Desconectar/conectar máquina; si se repite, informar a EMCO

2528 ORDxx Error de sistema operativo PLC

Remedio: Desconectar/conectar máquina; si se repite, informar a EMCO

2529 ORDxx Error de teclado externo

Remedio: El teclado externo debe conectarse en conexión de RS232 siempre después del PC.

Desconectar/conectar teclado; si se repite, informar a EMCO

2540 ORDxx Error al guardar datos de configur.

- Causa: Disco duro lleno, datos de vía erróneos, no se tiene autorización para escribir
- Remedio: Comprobar capacidad de disco duro; si se repite el problema, volver a instalar el software

2545 ORDxx Unidad / Aparato no preparados

Remedio: Insertar diskette, bloquear vía

2546 ORDxx Error total de control datos máquina

Remedio: Si se repite, informar a EMCO

2550 ORDxx Error de simulación PLC

Remedio: Si se repite, informar a EMCO

2551 ORDxx Error de simulación PLC

Remedio: Si se repite, informar a EMCO

2562 ORDxx Error de lectura de fichero de

programa

Causa: Fichero defectuoso, error de diskette o disco duro

Remedio: Solucionar problena en DOS; posible reinstalación del software

2614 ORDxx Error interno de datos de máquina Remedio: Si se repite, informar a EMCO

2650 Nxxxx Error interno de llamada de ciclo

Causa: Llamada de ciclo no válida si se llama al ciclo con comando G

Remedio: Corregir el programa

2849 Nxxxx Error interno SRK/FRK

Remedio: Si se repite, informar a EMCO

2904 Nxxxx Hélice trayectoria Z muy grande

El paso de hélice no puede ser superior a 45° respecto a la tangente de círculo.

Remedio: Corregir el programa

emco