Universidad de Guadalajara Centro Universitario de Los Lagos Div. De Estudios de la Biodiversidad e Innovación Tecnológica

SISTEMA BÁSICO DE MANUFACTURA (MPS)

TALLER DE PROGRAMACIÓN CLASIFICADOR

Nivel Básico

Mtra. Diana Costilla López

SISTEMAS BÁSICOS DE MANUFACTURA

Objetivo:

El propósito de este taller es desarrollar habilidades en el área de Programación de PLC aplicado a una estación MPS^{MR} (Sistema de Producción Modular), utilizando lista de instrucciones (comandos) en el FST^{MR} 4, para programar la estación de manufactura modular.

Descripción de la Estación de trabajo:

- Estación MPS^{MR} Clasificadora ensamblada y ajustada
- Tablero de Control
- PLC
- Fuente de alimentación 24 v DC, 4.5A
- Fuente de aire comprimido de 6 bar (600kPa), aproximadamente, capacidad de succión de 50 litros/min.
- Una computadora con el software de programación instalado.

Función:

La estación clasificadora, separa piezas en tres rieles (resbaladillas). Un sensor difuso detecta las piezas de trabajo que se introducen al inicio de la banda transportadora.

Las caracterísiticas de las piezas (negra, rosa, plateada/metálica) son detectadas por sensores frente al paro y las piezas son clasificadas en los rieles apropiados mediante las palancas. Las palancas se mueven por la acción de cilindros de carrera corta. Un sensor retro-reflector monitorea el nivel de llenado de los rieles.

Estación Clasificadora (Sorting)

Descripción de la secuencia:

Prerrequisitos del arranque:

• Pieza de trabajo al inicio de la banda

Posición inicial:

- Cilindro de paro, activado
- Palanca 1 desactivada (retraída)
- Palanca 2 desactivada (retraída)
- Motor de la Banda detenido

Secuencia

- 1. Pieza de trabajo detectada
- 2. Motor de la Banda encendido
- 3. Identificación de color/material

Pieza Negra detectada, depositar en el riel al final de la banda

- 4. Cilindro de paro retraído
- 5. Pieza avanza
- 6. Paso final *

Pieza Plateada/Metálica detectada, depositar en el riel al centro de la banda

- 7. Palanca 2 activada
- 8. Cilindro de paro retraído
- 9. Pieza avanza
- 10. Paso final *

Pieza Rosa detectada, depositar en el riel al inicio de la banda

- 11. Palanca 1 activada
- 12. Cilindro de paro retraído
- 13. Pieza avanza
- 14. Paso final *
- 15. * Motor de la Banda detenido Cilindro de paro activado Palanca 1 retraída Palanca 2 retraída

La banda es accionada por un motor de Corriente Directa, un sensor difuso detecta si la pieza esta disponible al principio de la banda, esto ocasiona que el ciclo del programa arranque y el motor de la banda del clasificador encienda.

La pieza es detenida por el cilindro de paro. Un sensor difuso identifica el color de la pieza. Las piezas metálicas son detectadas por el sensor de proximidad inductivo.

Dependiendo de la pieza, se activará la palanca correspondiente. Una vez que la pieza es liberada por el cilindro es transportada al riel correspondiente.

Las piezas que llegan a los rieles son clasificadas y un sensor retro-reflector monitorea el nivel de llenado de los rieles.

Pasos para la programación de PLC's con el FST 4.10.5:

- 1. Abrir proyecto nuevo.
- 2. Definir tipo de PLC en *Project Settings
 - Nombre 8 caracteres
 - Tipo de PLC (FEC Standar 640 / FEC Compacto)
 - Comentarios
- 3. Definir las variables en *Allocation List
 - Entradas y Salidas
 - Timers
 - Programas
- 4. Agregar los programas en **Programs*
 - Insertar programas (Nombre y versión)
 - Tipo de programa (Escalera o Lista de Instrucciones)
- 5. Declarar Subrutinas en *CMPs
- 6. Declarar Subrutinas en *CFMs
- 7. Ajustar detalles en **Controller Settings*
 - Varias opciones tales como Run Mode, Drivers, Download (Autostart/Stop o Delete proyect before download)
- 8. Ajustar detalles en *IO Configuration
 - Tipo de PLC (palabra reservada para entrada o salida)
- 9. Ajustar o cargar controladores en *Driver Configuration
 - Se agregan drivers (controladores) opcionales tales como el TCP/IP, para cuando se requiere mandar el programa a través de la red. (No son necesarios si se trabaja directamente en la máquina donde se realizó el programa y se baja a través el puerto serial).
- 10. Para compilar **Make Project* o **F**7
- 11. Después construir proyecto *Build Project
- 12. Para identificar el tipo de comunicación con el PLC *Extras / Preferences
 - Se puede seleccionar comunicación de tipo Serial, puerto COM1, COM3, taza de transferencia std-9600, se recomienda probar con tazas menores si se duda de la capacidad de la máquina.
- 13. Desde *Online / Login se puede probar la comunicación con el puerto.
 - Es posible buscar comunicación por red, seleccionando la dirección IP de PLC una vez que se ha busado y se confirma se encuentra disponible (para este caso es necesario agregar el controlador TCP/IP).
- 14. Para bajar *Online / Download o F5
 - Al bajar un programa al PLC, si existe otro se reemplazará el anterior, perdiendo la información almacenada previamente, el software preguntará si se desea llevar a cabo el reemplazo de archivo.
- 15. Para guardar un respaldo *Backup
- 16. Para cargar un respaldo *Restore

Allocation List: Lista de operandos:

Debe realizarse una lista con las entradas (I0.0-In.n dependiendo el número de entradas) y salidas (O0.0-On.n dependiendo el número de salidas), de la estación que se utilizarán para trabajar, puede hacerse al principio o sobre la marcha de la programación, es necesario dejar bien indicado a qué corresponde cada elemento, es decir, puede ponerse el nombre abreviado en el símbolo y algún comentario extra para identificar los elementos.

Operando	Símbolo	Comentario
O0.0	Banda	Banda
00.1	SR	Palanca Selector Rojos
00.2	SM	Palanca Selector Metálico
00.3	Bloqueo	Piston de Paro, Entrada Pieza
01.0	LEDstar	Indicador de Inicio
01.1	LEDreset	Indicador RESET
01.2	LEDQ1	Indicador Q1
01.3	LEDQ2	Indicador Q2
01.4	LEDQ4	Indicador Q4
01.5	LEDQ5	Indicador Q5
01.6	LEDQ6	Indicador Q6
01.7	LEDQ7	Indicador Q7
10.0	Ingreso	Sensor Óptico de Presencia
I0.1	Metalico	Sensor Metálico
10.2	Color	Sensor para Detectar Color
10.3	Full	Sensor Nivel Resbaladilla (Riel) llena
I0.4	P1Off	Pistón 1 Abajo
10.5	P1On	Pistón 1 Arriba
I0.6	P2Off	Pistón 2 Abajo
10.7	P2On	Pistón 2 Arriba
I1.0	Barranque	Botón de Arranque
I1.1	Bstop	Botón de Paro
I1.2	Llave	Llave Manual Automático
I1.3	Reset	RESET
I1.4	ParoEmerg	Paro de Emergencia
ТО	timer0	Timer 0 del Programa
TPO	tiempo0	Tiempo 0 del Timer del Programa
TI	timer1	Timer 1 del Programa
TP1	tiempo l	Tiempo 1 del Timer del Programa

Programación Lista de Instrucciones (Statement List):

Para la programación mediante Lista de Instrucciones deben definirse las entradas y salidas, así como los temporizadores conforme sobre la marcha de forma previa o , deben establecerse los pasos secuenciales del programa y en cada uno de ellos plantear las comparaciones lógicas correspondientes, ejemplo:

Programa Clasificador de Piezas Negras:

STEP 0

IF	NOP	
AND	I0.4	'pistón 1 abajo
AND	I0.6	'pistón 2 abajo
THEN		
RESET	00.1	'palanca selector rojos
RESET	00.2	'palanca selector metálico
RESET	00.0	'banda
RESET	Bloqueo	'pistón de paro, entrada de pieza

//Este primer paso, establece la condición del sistema
SI no hay operación(NOP), y si los pistones 1 y 2 están en la posición
baja, ENTONCES desactiva las palancas selectoras, la banda y el pistón de
paro.

STEP 1

IF		PlOff	'pistón 1 abajo	
AND		P2Off 'pistón 2 abajo		
AND		Barranque	'boton de arranque	
AND		Ingreso	'sensor óptico de presencia	
THEN	SET	Banda	'banda	

//Paso 1.- SI los pistones 1 y 2 están en la posición baja, Y se activa el botón de arranque, Y el sensor de ingreso indica pieza, ENTONCES activa la banda

STEP 2

IF		PlOff	'pistón 1 abajo
AND		P2Off	'pistón 2 abajo
AND	Ν	Color	'sensor para detectar color
AND	N	Metalico	'sensor metálico
THEN	SET	Bloqueo	'pistón de entrada de pieza

//Paso 2.- SI los pistones 1 y 2 están en la posición baja, Y NO hay señal del sensor de color, Y NO hay señal del sensor inductivo, ENTONCES activa el pistón de paro (se retrae)

STEP	3		
	IF	Full	'sensor detecta resbaladilla llena
THEN	RESET	Bloqueo	'piston de entrada de pieza
	RESET	Banda	'banda

//Paso 3.- SI el sensor retro-reflector detecta pieza, ENTONCES desactiva la banda y el pistón de paro (bloqueo)

JMP TO 0

//Final del programa, regresa al PASO 0 en caso de que quiera hacerse un programa recursivo, <u>Nota:</u> un salto de este tipo puede utilizarse para ir a cualquiera de los pasos anteriores.

Temporizadores:

Para dar de alta un temporizador dentro del programa, es necesario definir en la lista de operandos "Allocation List", tanto al temporizador como el tiempo durante el cual deberá trabajar, como ejemplo se define: T4 como el Timer o Temporizador número 4 del programa, y se da de alta TP4 tiempo durante el cual deberá contar, el valor del temporizador debe declararse en el primer paso del programa, a partir de allí en cualquier paso posterior puede llamarse al temporizador para que comience el conteo, una vez que transcurra el tiempo establecido podrá utilizarse como un parámetro de tipo condicional para el paro o arranque de otros elementos, ejemplo:

STEP	1				
	IF THEN		NOP LOAD	V2570	<pre>//si no hay operación carga el //valor del tiempo en centésimas de segundo</pre>
	ТО		трО		//al temporizador cero
	•				
STEP	X				<pre>//En cualquier paso posterior puede encenderse</pre>
	SET ·		тО		//Inicializa el temporizador cero
STEP	Y				
	IF	Ν	тО		//Condicional, si no esta contando T0, entonces
	THEN	• • • • •	• • •		

<u>Nota:</u> es importante no confundir Tn con TPn, ya que uno es el temporizador y el otro es valor a contar.

A continuación se presenta el programa para clasificar piezas negras pero agregando un tiempo de espera para el inicio:

Programa Clasificador de Piezas Negras, con temporizador:

STEP 0

IF	NOP	
LOAD	V300	'valor del tiempo 3 segundos
ТО	TPO	'temporizador cero

//Paso 0.- Si no hay operación (NOP) se carga el valor en centésimas de segundo al temporizador, para este ejemplo se cargan 3 segundos en el tiempo del timer TPO (*Nota*: TPO y TO trabajan juntos pero son operandos independientes, TPO es el tiempo que se carga en el temporizador TO) STEP 1

IF	I0.4	'pistón 1 abajo
AND	I0.6	'pistón 2 abajo
THEN		
RESET	00.1	'palanca selector rojos
RESET	00.2	'palanca selector metálico
RESET	00.0	'banda
RESET	Bloqueo	'pistón de paro, entrada de pieza

STEP 2

IF		PlOff	'pistón 1 abajo
AND		P2Off	'pistón 2 abajo
AND		Barranque	'boton de arranque
AND		Ingreso	'sensor óptico de presencia
THEN	SET SET	Banda TO	'banda 'temporizador 0 del programa

//Paso 2.- Se activa el temporizador, y comienza el conteo

STEP	3			
	IF	Ν	ТО	'temporizador 0 del programa
	AND		PlOff	'pistón 1 abajo
	AND		P2Off	'pistón 2 abajo
	AND	Ν	Color	'sensor para detectar color
	AND	Ν	Metalico	'sensor metálico
	THEN	SET	Bloqueo	'pistón de entrada de pieza

//Paso 3.- SI no está activo el temporizador y el resto de las condiciones se cumple, ENTONCES activa el pistón de paro (se retrae)

STEP 4		
IF	Full	'sensor detecta resbaladilla llena
THEN RESET	Bloqueo	'piston de entrada de pieza
RESET	Banda	'banda

JMP TO 0

Diagrama de Funciones (GRAFSET):

Al final se presenta el diagrama de funciones del programa general de la estación de clasificación (Sorting).

Referencias técnicas:

• Sorting Station Manual FESTO 04/2006

Función secuencial gráfica según (DIN EN 60848) para la estación de clasificación

1 bit enlace

